
The SystemC Verification
Standard (SCV)

Stuart Swan
Senior Architect
Cadence Design Systems, Inc.
stuart@cadence.com

2

The Verification Problem…

System Level Verification is typically done last,
is typically on the critical path - and is typically

done too late for architectural redesign

Block Verification

Block Design

Architecture Phase

Q0 Q1 Q2 Q3 Q4 Q5

System Level Verification

3

Advantages of Verification with SystemC

System Level Verification can be done
throughout the lifetime of the project, and the
same verification components can be reused
for both block verification and architectural

exploration and optimization

Block Verification

System Level Verification

Block Design

Architecture Phase

Q0 Q1 Q2 Q3 Q4 Q5

4

SystemC Verification Working Group History
and Membership

! Joint Proposal by Fujitsu, ST and Motorola – June 2001
– SystemC 2.0 provides a platform upon which various design

methodologies can be built
– SystemC should also provide a platform upon which various

verification methodologies can be built
! Membership

– Cadence, Forte, Synopsys
– ARM, Axys, Elixent, Fujitsu, Infineon, Motorola, Philips
– Universities : Chemnitz, Tuebingen

5

SystemC Verification Standard (SCV) Status
! SCV 1.0 specification approved by OSCI steering group in Sept. 2002.
! SCV 1.0 reference implementation (beta) made publicly available via

www.systemc.org in December 2002.
! Expectation is for final SCV 1.0 production code around March 2003.
! Areas Covered in SCV 1.0

– Data Introspection (similar to Verilog PLI but for C/C++ data structures)
– Randomization and seed management for reproducibility of simulation runs
– Constrained randomization
– Weighted randomization
– Transaction Monitoring and Recording
– Sparse Array Support

! SCV 1.0 provides the key capabilities needed to construct advanced
reusable verification IP in SystemC today

6

Future Work for SystemC VWG

!Short Term
"Respond to SCV 1.0 review feedback
"Provide SCV 1.0 production release

!Medium Term
"Extend SCV documentation, examples, tutorial
"Consider SCV extensions, possibly including:

- Functional Coverage
- Assertions and temporal expressions

7

Transaction-Level Modeling in SystemC

! Why do transaction-level modeling in SystemC?
– Models are relatively easy to develop and use
– HW and SW components of a system can be accurately modeled. Typically bus

is cycle-accurate, and bus masters / slaves may or may not be cycle-accurate.
– Extensive system design exploration and verification can be done early in the

design process, before it’s too late to make changes
– Models are fast – typically about 100K clock cycles per second, making it

possible to execute significant amounts of the system’s software very early in
the design process

! Transaction-level modeling is extensively covered in the System Design
with SystemC book and the code for the simple_bus design is provided

CPU / Bus Master DSP / Bus Master Monitor

Bus Arbiter

FastMem / Slave SlowMem / Slave HW Accel / Slave

Communication between modules
is modeled using function calls that
represent transactions. No signals
are used.

Read: Addr: 0xFF12
Data: 0x0123

Read: Addr: 0xFF14
Data: 0xBEEF

8

Transaction-Based Verification in SystemC

! Why do transaction-based verification in SystemC?
– Ability to have everything (except perhaps RTL HDL) in SystemC/C++ provides

great benefits: easier to learn and understand, easier to debug, higher
performance, easy to integrate C/C++ code & models, open source
implementation, completely based on industry standards

– Allows you to develop smart test benches early in the design process (before
developing detailed RTL) to find bugs and issues earlier. Enables test bench
reuse throughout the design process.

– Much more efficient use of verification development effort and verification
compute resources

! Transaction-Based Verification in SystemC is described in detail in the
SCV Specification, and in the documentation and examples included
with the OSCI SCV reference implementation kit.

Constrained
Random

Generation of
Transactions

Golden Model of
Design

(abstract or TLM)

High->Low
Transactor

Design:
SysC TLM

or RTL HDL

Low->High
Transactor

Response
Checker

Black = SystemC

Red = SysC or HDL= Transaction
monitoring /
recording

9

SystemC 2.0 Language Architecture

Core Language
Modules
Ports
Processes
Interfaces
Channels
Events

Data Types
Logic Type (01XZ)
Logic Vectors
Bits and Bit Vectors
Arbitrary Precision Integers
Fixed Point Numbers
C++ Built-In Types (int, char, double, etc.)
C++ User-Defined Types

Elementary Channels
Signal, Clock, Mutex, Semaphore, Fifo, etc.

Standard Channels for
Various MOCs

Kahn Process Networks
Static Dataflow, etc.

Add-On Libraries
SCV Verification Standard Library

Master/Slave Library
etc.

C++ Language Standard

Upper layers
are built cleanly
on lower layers.

Lower layers
can be used
without upper
layers.

10

SCV Builds Cleanly on SystemC and C++

! Many features in other hardware verification languages
such as Vera and Veristy’s ‘e’ aren’t provided in SCV
because they are already in SystemC or C++. For example:
– Classes, templates, inheritance (C++)
– Hardware-oriented datatypes (SystemC)
– Modules, ports, processes, interfaces, channels, events (SystemC)
– Semaphores, fifos, signals, etc. (SystemC)
– Dynamic thread creation (SystemC 2.1, forkjoin example in 2.0.1)
– Vectors, maps, lists, associative arrays, etc. (C++ STL)
– Connection to HDL simulators (SystemC / EDA vendors)

11

SystemC 2.0 already supports transactors

Transaction
Level Tests Transactors Signal Level

Design

signal
activities

transaction
level activities

test transactor design

12

class transactor_if :
public virtual sc_interface {
public:

virtual int read (unsigned addr) = 0;
};

class design_ports :
public sc_module {
public:

sc_in < bool > clk;
sc_inout < sc_int<48> > data;

};

SystemC 2.0 already supports transactors

test transactor design

class transactor :
public design_ports,
public transactor_if {

public:
int read (unsigned addr) {

wait(clk.posedge_event())
return data;

};

13

SCV Stimulus Generation Techniques

! Directed Tests
– Traditional way to stimulate designs

! Weighted Randomization
– Helps focus stimulus generation on interesting test scenarios

! Constrained Randomization
– Enables complex and thorough tests to be developed quickly by

declaring constraints among parts of stimulus data
! All of the above techniques can be combined as needed

14

Randomization using distributions

Creating a simple distribution without weights:

scv_smart_ptr<int> p;
p->keep_only(0,100);
p->keep_out(3,98);
p->next(); 0 1 2 3 4 … 98 99 100

probability distribution

15

Weighted Randomization
Creating a distribution with weights on discrete values:

scv_bag<int> dist;
dist.add(0,16);
dist.add(1,8);
dist.add(2,4);
dist.add(3,2);
dist.add(4,1);

scv_smart_ptr<int> p;
p->set_mode(dist);
p->next(); 0 1 2 3 4 5 …

probability distribution

16

Weighted Randomization
Creating a distribution with weights on ranges:

scv_bag<pair<int, int> > dist;
dist.add(pair<int,int>(1,3), 100);
dist.add(pair<int,int>(4, 10), 30);
dist.add(pair<int,int>(11, 20), 20);
dist.add(pair<int,int>(21, 80), 80);

scv_smart_ptr<int> p;
p->set_mode(dist);
p->next();

0 10 20 30 40 50 …

probability distribution

17

Constrained Randomization
class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

18

Constrained Randomization

// randomize whole packet
scv_smart_ptr < packet_t > p ;
p->next();

class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

19

Constrained Randomization

// randomize whole packet
scv_smart_ptr < packet_t > p ;
p->next();

// keep src fixed
scv_smart_ptr < packet_t > p ;
p->src.disable_randomization();
p->next();

class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

20

Constrained Randomization

// randomize whole packet
scv_smart_ptr < packet_t > p ;
p->next();

// keep src fixed
scv_smart_ptr < packet_t > p ;
p->src.disable_randomization();
p->next();

class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

// basic constraint
class my_constraint : public scv_constraint_base {
public:

scv_smart_ptr < packet_t > p ;
SCV_CONSTRAINT_CTOR(my_constraint) {

SCV_CONSTRAINT (p -> src () != p -> dest ());
for (int i = 0; i < 8 ; ++ i)

SCV_CONSTRAINT (p -> data [i]() < 10);
}

};

21

Constrained Randomization

// randomize whole packet
scv_smart_ptr < packet_t > p ;
p->next();

// basic constraint
class my_constraint : public scv_constraint_base {
public:

scv_smart_ptr < packet_t > p ;
SCV_CONSTRAINT_CTOR(my_constraint) {

SCV_CONSTRAINT (p -> src () != p -> dest ());
for (int i = 0; i < 8 ; ++ i)

SCV_CONSTRAINT (p -> data [i] < 10);
}

};

// keep src fixed
scv_smart_ptr < packet_t > p ;
p->src.disable_randomization();
p->next();

// constrain packet
my_constraint c(“constraint”);
c.p->next();

class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

22

Constrained Randomization

// randomize whole packet
scv_smart_ptr < packet_t > p ;
p->next();

// basic constraint
class my_constraint : public scv_constraint_base {
public:

scv_smart_ptr < packet_t > p ;
SCV_CONSTRAINT_CTOR(my_constraint) {

SCV_CONSTRAINT (p -> src () != p -> dest ());
for (int i = 0; i < 8 ; ++ i)

SCV_CONSTRAINT (p -> data [i]() < 10);
}

};

// keep src fixed
scv_smart_ptr < packet_t > p ;
p->src.disable_randomization();
p->next();

// constrain packet
new_constraint c(“constraint”);
c.p->next();

class packet_t
{

sc_uint<8> src;
sc_uint<8> dest;
sc_uint<32> data[8];

}

// extended constraint
class new_constraint : public my_constraint {
public:

SCV_CONSTRAINT_CTOR(new_constraint) {
SCV_CONSTRAINT_BASE(my_constraint)
SCV_CONSTRAINT (p -> data [0]() != p -> data [1]());

}
};

23

Transaction Monitoring and Recording

! SCV provides transaction monitoring and recording
capabilities that enable users to analyze the transactions
within their designs
– Much easier and more efficient than analyzing signal waveforms

! The same API can be used to dynamically monitor
transactions or to record transactions into a database

! An ASCII database is supported by SCV, but other
databases can be easily plugged into the SCV
transaction API

24

Transaction Monitoring and Recording

! The SCV Transaction API uses the following concepts:
– A transaction has a begin time, end time, and a set of data

attributes (e.g. int address, int data)
– A generator (scv_tr_generator<>) creates instances of

transactions of a specific type (e.g. burst reads, interrupt, etc.).
– A stream (scv_tr_stream) groups related and potentially

overlapping transactions together.
– A database (scv_tr_db) contains a set of transaction streams.
– A transaction handle (scv_tr_handle) provides access to a

particular transaction instance and enables transaction links to
be created

25

Transaction Monitoring and Recording

// basic transaction monitoring & recording
scv_tr_generator< int, int > read_gen ("read", …);
scv_tr_handle h = read_gen.begin_transaction(addr);
…
read_gen.end_transaction(h , data);

read :
addr : 0xFF
data : 0xabcd

read :
addr : 0xFE
data : 0x1234

Transaction
Stream A

read :
addr : 0x00
data : 0x4321

transactions can overlap one another

26

Why SystemC ?

Design

Verification Modelling

#

##

27

Learning more about SCV

!Download the SCV reference implementation,
documentation, examples and tutorial!

"Read information at www.systemc.org
"Download and unpack the kit
"Read the README file
"Documentation is in the “doc” directory
"Examples and tutorial are in the “examples” directory

28

Learning more about SystemC

! Our new book is available
at:
$www.systemc.org

$Products & Solutions
$Books
$System Design with SystemC

! Provides an in-depth
discussion of new
SystemC features and
using SystemC for TLM

! Available now in English,
Japanese and soon in
Korean

