

UVM-SystemC

Language Reference Manual

DRAFT

4 December 2015

UVM-SystemC Language Reference Manual – DRAFT Page 2

Copyright notice

© 2012 – 2015 NXP B.V. All rights reserved.

© 2011 – 2013 Accellera Systems Initiative. All rights reserved.

© 2009 – 2011 Cadence Design Systems, Inc. (Cadence). All rights reserved.

License

This documentation is licensed under the Apache Software Foundation‘s Apache License, Version 2.0, January

2004. The full license is available at: http://www.apache.org/licenses/

Trademarks

Accellera, Accellera Systems Initiative, SystemC and UVM are trademarks of Accellera Systems Initiative Inc. All

other trademarks and trade names are the property of their respective owners.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America.

Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility

to determine the applicable regulations and comply with them.

Disclaimer

THE CONTRIBUTORS AND THEIR LICENSORS MAKE NO WARRANTY OF ANY KIND WITH REGARD

TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

The creation of this document has been supported by the European Commission as part of the Seventh Framework

Programme (FP7) for Research and Technological Development in the project 'VERIFICATION FOR

HETEROGENOUS RELIABLE DESIGN AND INTEGRATION' (VERDI). The research leading to this result has

received funding from the European Commission under grand agreement No 287562.

More information on the Seventh Framework Programme (FP7) and VERDI project can be found here:

 http://cordis.europa.eu/fp7

 http://www.verdi-fp7.eu

Special thanks to the Accellera Systems Initiative to grant authorization to use portions of its Universal Verification

Methodology Reference Implementation (UVM version 1.1d, March 2013) in this document.

The partners in the VERDI consortium wish to thank Cadence Design Systems Inc. for the initial donation of the

UVM-SC Library Reference and documentation (UVM version 1.0, June 2011). This document has been derived

from this work, and further enhanced and extended to make it compatible with the UVM 1.1 standard.

Bugs and Suggestions

Please report bugs and suggestions about this document to:

 uvm-systemc-feedback@lists.accellera.org

Page 3 UVM-SystemC Language Reference Manual – DRAFT

Table of Contents

1. INTRODUCTION ... 15

2. UVM-SYSTEMC OVERVIEW .. 16

2.1 NAMESPACE ... 16

2.2 HEADER FILES .. 16

2.3 GLOBAL FUNCTIONS ... 16

2.4 BASE CLASSES .. 16

2.5 POLICY CLASSES .. 16

2.6 REGISTRY AND FACTORY CLASSES ... 17

2.7 COMPONENT HIERARCHY CLASSES ... 17

2.8 SEQUENCERS CLASSES ... 17

2.9 SEQUENCE CLASSES ... 18

2.10 CONFIGURATION AND RESOURCE CLASSES ... 18

2.11 PHASING AND SYNCHRONIZATION CLASSES ... 18

2.12 REPORTING CLASSES .. 19

2.13 MACROS ... 19

2.14 EXISTING SYSTEMC FUNCTIONALITY USED IN UVM-SYSTEMC ... 20

2.15 METHODOLOGY FOR HIERARCHY CONSTRUCTION .. 21

3. GLOBAL FUNCTIONS .. 22

3.1 UVM_SET_CONFIG_INT ... 22

3.2 UVM_SET_CONFIG_STRING ... 22

3.3 RUN_TEST .. 22

4. BASE CLASSES ... 23

4.1 UVM_VOID ... 23

4.1.1 Class definition .. 23

4.2 UVM_OBJECT .. 23

4.2.1 Class definition .. 23

4.2.2 Construction ... 25

4.2.3 Identification .. 25

4.2.4 Creation.. 26

4.2.5 Printing .. 27

4.2.6 Recording ... 28

4.2.7 Copying.. 28

4.2.8 Comparing ... 29

4.2.9 Packing .. 29

4.2.10 Unpacking .. 30

4.2.11 Object macros .. 31

UVM-SystemC Language Reference Manual – DRAFT Page 4

4.3 UVM_ROOT ... 32

4.3.1 Class definition .. 32

4.3.2 Simulation control.. 32

4.3.3 Topology .. 33

4.3.4 Global variable ... 34

4.4 UVM_PORT_BASE ... 35

4.4.1 Class definition .. 35

4.4.2 Template parameter IF ... 35

4.4.3 Constructor .. 36

4.4.4 Member functions .. 36

4.5 UVM_COMPONENT_NAME ... 36

4.5.1 Class definition .. 37

4.5.2 Constraints on usage .. 37

4.5.3 Constructor .. 37

4.5.4 Destructor .. 38

4.5.5 operator const char* ... 38

5. POLICY CLASSES ... 39

5.1 UVM_PACKER ... 39

5.1.1 Class definition .. 39

5.1.2 Constraints on usage .. 42

5.1.3 Packing .. 42

5.1.4 Unpacking .. 43

5.1.5 operator <<, operator>> ... 44

5.1.6 Data members (variables) .. 44

5.2 UVM_PRINTER .. 45

5.2.1 Class definition .. 45

5.2.2 Constraints on usage .. 47

5.2.3 Printing types ... 48

5.2.4 Printer subtyping .. 50

5.2.5 Data members .. 51

5.3 UVM_TABLE_PRINTER .. 51

5.3.1 Class definition .. 52

5.3.2 Constructor .. 52

5.3.3 emit .. 52

5.4 UVM_TREE_PRINTER .. 52

5.4.1 Class definition .. 52

5.4.2 Constructor .. 52

5.4.3 emit .. 53

Page 5 UVM-SystemC Language Reference Manual – DRAFT

5.5 UVM_LINE_PRINTER ... 53

5.5.1 Class definition .. 53

5.5.2 Constructor .. 53

5.5.3 emit .. 53

5.6 UVM_COMPARER .. 53

5.6.1 Class definition .. 53

5.6.2 Constraints on usage .. 55

5.6.3 Member functions .. 55

5.6.4 Comparer settings .. 57

5.7 DEFAULT POLICY OBJECTS ... 59

6. REGISTRY AND FACTORY CLASSES ... 61

6.1 UVM_OBJECT_WRAPPER ... 61

6.1.1 Class definition .. 61

6.1.2 Member functions .. 62

6.2 UVM_OBJECT_REGISTRY .. 62

6.2.1 Class definition .. 62

6.2.2 Template parameter T .. 63

6.2.3 Member functions .. 63

6.3 UVM_COMPONENT_REGISTRY .. 64

6.3.1 Class definition .. 64

6.3.2 Template parameter T .. 65

6.3.3 Member functions .. 65

6.4 UVM_FACTORY... 67

6.4.1 Class definition .. 67

6.4.2 Registering types.. 69

6.4.3 Type and instance overrides ... 69

6.4.4 Creation.. 70

6.4.5 Debug ... 72

7. COMPONENT HIERARCHY CLASSES ... 74

7.1 UVM_COMPONENT .. 74

7.1.1 Class definition .. 74

7.1.2 Construction interface .. 78

7.1.3 Hierarchy interface .. 78

7.1.4 Phasing interface .. 80

7.1.5 Process control interface .. 87

7.1.6 Configuration interface .. 88

7.1.7 Objection interface ... 88

7.1.8 Factory interface .. 89

UVM-SystemC Language Reference Manual – DRAFT Page 6

7.1.9 Hierarchical reporting interface ... 91

7.1.10 Macros ... 93

7.2 UVM_DRIVER.. 94

7.2.1 Class definition .. 94

7.2.2 Template parameters .. 94

7.2.3 Ports ... 94

7.2.4 Member functions .. 95

7.3 UVM_MONITOR... 95

7.3.1 Class definition .. 95

7.3.2 Member functions .. 96

7.4 UVM_AGENT ... 96

7.4.1 Class definition .. 96

7.4.2 Member functions .. 96

7.5 UVM_ENV ... 97

7.5.1 Class definition .. 97

7.5.2 Member functions .. 97

7.6 UVM_TEST .. 98

7.6.1 Class definition .. 98

7.6.2 Member functions .. 98

7.7 UVM_SCOREBOARD .. 98

7.7.1 Class definition .. 98

7.7.2 Member functions .. 99

7.8 UVM_SUBSCRIBER .. 99

7.8.1 Class definition .. 99

7.8.2 Template parameter T .. 100

7.8.3 Export .. 100

7.8.4 Member functions .. 100

8. SEQUENCER CLASSES .. 101

8.1 UVM_SEQUENCER_BASE... 101

8.1.1 Class definition .. 101

8.1.2 Constructor .. 102

8.1.3 Member functions .. 102

8.2 UVM_SEQUENCER_PARAM_BASE ... 106

8.2.1 Class definition .. 106

8.2.2 Template parameters .. 107

8.2.3 Constructor .. 107

8.2.4 Requests ... 107

8.3 UVM_SEQUENCER ... 107

Page 7 UVM-SystemC Language Reference Manual – DRAFT

8.3.1 Class definition .. 107

8.3.2 Template parameters .. 108

8.3.3 Constructor .. 108

8.3.4 Exports ... 108

8.3.5 Sequencer interface .. 109

8.3.6 Macros ... 110

9. SEQUENCE CLASSES ... 111

9.1 UVM_TRANSACTION ... 111

9.1.1 Class definition .. 111

9.1.2 Constructors ... 112

9.1.3 Constraints on usage .. 112

9.1.4 Member functions .. 112

9.2 UVM_SEQUENCE_ITEM ... 112

9.2.1 Class definition .. 112

9.2.2 Constructors ... 113

9.2.3 Member functions .. 113

9.3 UVM_SEQUENCE_BASE ... 115

9.3.1 Class definition .. 115

9.3.2 Constructor .. 117

9.3.3 Sequence state .. 118

9.3.4 Sequence execution .. 118

9.3.5 Sequence control .. 120

9.3.6 Sequence item execution.. 122

9.3.7 Response interface ... 123

9.3.8 Data members .. 125

9.4 UVM_SEQUENCE ... 125

9.4.1 Class definition .. 125

9.4.2 Template parameters .. 125

9.4.3 Constructor .. 126

9.4.4 Member functions .. 126

10. CONFIGURATION AND RESOURCE CLASSES.. 127

10.1 UVM_CONFIG_DB ... 127

10.1.1 Class definition .. 127

10.1.2 Template parameter T .. 128

10.1.3 Constraints on usage .. 128

10.1.4 Member functions .. 128

10.2 UVM_RESOURCE_DB .. 129

10.2.1 Class definition .. 129

UVM-SystemC Language Reference Manual – DRAFT Page 8

10.2.2 Template parameter T .. 131

10.2.3 Constraints on usage .. 131

10.2.4 Member functions .. 131

10.3 UVM_RESOURCE_DB_OPTIONS ... 133

10.3.1 Class definition .. 133

10.3.2 Member functions .. 134

10.4 UVM_RESOURCE_OPTIONS ... 134

10.4.1 Class definition .. 134

10.4.2 Member functions .. 135

10.5 UVM_RESOURCE_BASE ... 135

10.5.1 Class definition .. 135

10.5.2 Constructor .. 136

10.5.3 Resource database interface ... 137

10.5.4 Read-only interface .. 137

10.5.5 Notification .. 137

10.5.6 Scope interface ... 137

10.5.7 Priority ... 138

10.5.8 Utility functions ... 138

10.5.9 Audit trail ... 138

10.6 UVM_RESOURCE_POOL .. 139

10.6.1 Class definition .. 139

10.6.2 get .. 140

10.6.3 spell_check .. 140

10.6.4 Set interface ... 141

10.6.5 Lookup ... 141

10.6.6 Set priority ... 143

10.6.7 Debug ... 144

10.7 UVM_RESOURCE ... 144

10.7.1 Class definition .. 144

10.7.2 Template parameter T .. 145

10.7.3 Type interface .. 145

10.7.4 Set/Get interface .. 146

10.7.5 Read/Write interface .. 146

10.7.6 Priority ... 147

10.8 UVM_RESOURCE_TYPES ... 147

10.8.1 Class definition .. 147

10.8.2 Type definitions (typedefs) .. 148

Page 9 UVM-SystemC Language Reference Manual – DRAFT

11. PHASING AND SYNCHRONIZATION CLASSES .. 149

11.1 UVM_PHASE ... 149

11.1.1 Class definition .. 149

11.1.2 Construction ... 151

11.1.3 State ... 151

11.1.4 Callbacks.. 152

11.1.5 Schedule ... 153

11.1.6 Synchronization ... 154

11.1.7 Jumping.. 155

11.2 UVM_DOMAIN .. 155

11.2.1 Class definition .. 155

11.2.2 Constructor .. 156

11.2.3 Member functions .. 156

11.3 UVM_BOTTOMUP_PHASE .. 157

11.3.1 Class definition .. 157

11.3.2 Constructor .. 157

11.3.3 Member functions .. 158

11.4 UVM_TOPDOWN_PHASE ... 158

11.4.1 Class definition .. 158

11.4.2 Constructor .. 159

11.4.3 Member functions .. 159

11.5 UVM_PROCESS_PHASE (UVM_TASK_PHASE†) ... 159

11.5.1 Class definition .. 159

11.5.2 Member functions .. 160

11.6 UVM_OBJECTION .. 160

11.6.1 Class definition .. 160

11.6.2 Constructor .. 162

11.6.3 Objection control ... 162

11.6.4 Callback hooks ... 164

11.6.5 Objections status .. 165

11.7 UVM_CALLBACK .. 166

11.7.1 Class definition .. 166

11.7.2 Member functions .. 166

11.8 UVM_CALLBACK_ITER ... 167

11.8.1 Class definition .. 167

11.8.2 Template parameter T .. 167

11.8.3 Template parameter CB ... 167

11.8.4 Constructor .. 167

UVM-SystemC Language Reference Manual – DRAFT Page 10

11.8.5 Member functions .. 168

11.9 UVM_CALLBACKS .. 168

11.9.1 Class definition .. 169

11.9.2 Template parameter T .. 170

11.9.3 Template parameter CB ... 170

11.9.4 Constructor .. 170

11.9.5 Add/delete interface ... 170

11.9.6 Iterator interfaces ... 171

11.9.7 Debug ... 172

12. REPORTING CLASSES ... 173

12.1 UVM_REPORT_OBJECT.. 173

12.1.1 Class definition .. 174

12.1.2 Constructors ... 176

12.1.3 Reporting ... 176

12.1.4 Verbosity configuration ... 178

12.1.5 Action configuration .. 179

12.1.6 File configuration ... 180

12.1.7 Override configuration ... 181

12.1.8 Report handler configuration ... 181

12.2 UVM_REPORT_HANDLER .. 182

12.2.1 Class definition .. 182

12.2.2 Constructor .. 183

12.2.3 Member functions .. 183

12.3 UVM_REPORT_SERVER ... 184

12.3.1 Class definition .. 184

12.3.2 Constructor .. 186

12.3.3 Member functions .. 186

12.4 UVM_REPORT_CATCHER .. 189

12.4.1 Class definition .. 189

12.4.2 Constructor .. 191

12.4.3 Current message state .. 191

12.4.4 Change message state .. 192

12.4.5 Debug ... 193

12.4.6 Callback interface .. 193

12.4.7 Reporting ... 194

13. MACROS ... 196

13.1 COMPONENT AND OBJECT REGISTRATION MACROS .. 196

13.1.1 Macro definitions ... 196

Page 11 UVM-SystemC Language Reference Manual – DRAFT

13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS ... 196

13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS 197

13.2 REPORTING MACROS .. 197

13.2.1 Macro definitions ... 197

13.2.2 UVM_INFO ... 197

13.2.3 UVM_WARNING ... 198

13.2.4 UVM_ERROR ... 198

13.2.5 UVM_FATAL ... 198

13.3 SEQUENCE EXECUTION MACROS... 198

13.3.1 Macro definitions ... 198

13.3.2 UVM_DO .. 199

13.3.3 UVM_DO_PRI .. 199

13.3.4 UVM_DO_ON .. 199

13.3.5 UVM_DO_ON_PRI .. 199

13.3.6 UVM_CREATE... 199

13.3.7 UVM_CREATE_ON ... 200

13.3.8 UVM_DECLARE_P_SEQUENCER .. 200

13.4 CALLBACK MACROS ... 200

13.4.1 Macro definitions ... 200

13.4.2 UVM_REGISTER_CB .. 200

13.4.3 UVM_DO_CALLBACKS ... 200

14. TLM INTERFACES .. 202

14.1 UVM_BLOCKING_PUT_PORT ... 203

14.1.1 Class definition .. 203

14.1.2 Template parameter T .. 203

14.1.3 Constructor .. 203

14.1.4 Member functions .. 203

14.2 UVM_BLOCKING_GET_PORT ... 204

14.2.1 Class definition .. 204

14.2.2 Template parameter T .. 204

14.2.3 Constructor .. 204

14.2.4 Member functions .. 205

14.3 UVM_BLOCKING_PEEK_PORT ... 205

14.3.1 Class definition .. 205

14.3.2 Template parameter T .. 205

14.3.3 Constructor .. 206

14.3.4 Member functions .. 206

14.4 UVM_BLOCKING_GET_PEEK_PORT ... 206

UVM-SystemC Language Reference Manual – DRAFT Page 12

14.4.1 Class definition .. 206

14.4.2 Template parameter T .. 207

14.4.3 Constructor .. 207

14.4.4 Member functions .. 207

14.5 UVM_NONBLOCKING_PUT_PORT .. 208

14.5.1 Class definition .. 208

14.5.2 Template parameter T .. 208

14.5.3 Constructor .. 208

14.5.4 Member functions .. 208

14.6 UVM_NONBLOCKING_GET_PORT .. 209

14.6.1 Class definition .. 209

14.6.2 Template parameter T .. 209

14.6.3 Constructor .. 209

14.6.4 Member functions .. 210

14.7 UVM_NONBLOCKING_PEEK_PORT .. 210

14.7.1 Class definition .. 210

14.7.2 Template parameter T .. 211

14.7.3 Constructor .. 211

14.7.4 Member functions .. 211

14.8 UVM_NONBLOCKING_GET_PEEK_PORT .. 211

14.8.1 Class definition .. 211

14.8.2 Template parameter T .. 212

14.8.3 Constructor .. 212

14.8.4 Member functions .. 212

14.9 UVM_ANALYSIS_PORT.. 213

14.9.1 Class definition .. 213

14.9.2 Template parameter T .. 214

14.9.3 Constructor .. 214

14.9.4 Member functions .. 214

14.10 UVM_ANALYSIS_EXPORT ... 214

14.10.1 Class definition .. 215

14.10.2 Template parameter T .. 215

14.10.3 Constructor .. 215

14.10.4 Member functions .. 215

14.11 UVM_ANALYSIS_IMP .. 216

14.11.1 Class definition .. 216

14.11.2 Template parameters .. 216

14.11.3 Constructor .. 216

Page 13 UVM-SystemC Language Reference Manual – DRAFT

14.11.4 Member functions .. 217

14.12 UVM_TLM_REQ_RSP_CHANNEL ... 217

14.12.1 Class definition .. 217

14.12.2 Template parameters .. 218

14.12.3 Ports and exports .. 218

14.12.4 Constructor .. 220

14.13 UVM_SQR_IF_BASE .. 220

14.13.1 Class definition .. 220

14.13.2 Template parameters .. 221

14.13.3 Member functions .. 221

14.14 UVM_SEQ_ITEM_PULL_PORT .. 223

14.14.1 Class definition .. 224

14.14.2 Template parameters .. 224

14.14.3 Constructor .. 224

14.14.4 Member functions .. 224

14.15 UVM_SEQ_ITEM_PULL_EXPORT ... 224

14.15.1 Class definition .. 224

14.15.2 Template parameters .. 225

14.15.3 Constructor .. 225

14.15.4 Member functions .. 225

14.16 UVM_SEQ_ITEM_PULL_IMP .. 225

14.16.1 Class definition .. 225

14.16.2 Template parameters .. 226

14.16.3 Constructor .. 226

14.16.4 Member functions .. 226

15. GLOBAL DEFINES, TYPEDEFS AND ENUMERATIONS... 227

15.1 GLOBAL DEFINES ... 227

15.1.1 UVM_MAX_STREAMBITS .. 227

15.1.2 UVM_DEFAULT_TIMEOUT .. 227

15.2 TYPE DEFINITIONS (TYPEDEFS) ... 227

15.2.1 uvm_bitstream_t .. 227

15.2.2 uvm_integral_t ... 227

15.2.3 UVM_FILE .. 227

15.2.4 uvm_report_cb ... 227

15.2.5 uvm_config_int .. 227

15.2.6 uvm_config_string ... 227

15.2.7 uvm_config_object .. 227

15.2.8 uvm_config_wrapper ... 228

UVM-SystemC Language Reference Manual – DRAFT Page 14

15.3 ENUMERATION ... 228

15.3.1 uvm_action .. 228

15.3.2 uvm_severity .. 228

15.3.3 uvm_verbosity ... 228

15.3.4 uvm_active_passive_enum .. 229

15.3.5 uvm_sequence_state_enum .. 229

15.3.6 uvm_phase_type .. 229

ANNEX A. UVM-SYSTEMVERILOG FEATURES NOT INCLUDED IN UVM-SYSTEMC 231

A.1 NO FIELD MACROS .. 231

A.2 NO AUTOMATED CONFIGURATION .. 231

A.3 NO TRANSACTION RECORDING ... 231

A.4 NO REGISTER ABSTRACTION LAYER ... 231

A.5 NO CONSTRAINT RANDOMIZATION AND COVERAGE CLASSES ... 231

A.6 NO ASSERTIONS.. 231

ANNEX B. RENAMED FUNCTIONS UVM-SYSTEMC VERSUS UVM-SYSTEMVERILOG 232

ANNEX C. TERMINOLOGY .. 233

C.1 DEFINITIONS .. 233

C.2 ACRONYMS AND ABBREVIATIONS .. 235

INDEX... 237

Page 15 UVM-SystemC Language Reference Manual – DRAFT

1. Introduction

UVM-SystemC is a SystemC library extension offering features compatible with the Universal Verification

Methodology (UVM). This library is built on top of the SystemC language standard and defines the Application

Programming Interface aligned with that of the existing UVM 1.1 standard and associated base class library

implementation in SystemVerilog (SV). The UVM-SystemC library does not cover the entire UVM standard, nor

the existing UVM implementation in SystemVerilog. However, the UVM-SystemC library offers the essential

ingredients to create verification environments which are compliant with the UVM standard.

UVM-SystemC is released as proof-of-concept library that works with any IEEE 1666-2011 compliant SystemC

simulation environment. Note that UVM-SystemC uses certain specialized SystemC features introduced since the

revision in 2011, such as process control constructs, which are not implemented in all SystemC simulators. The

UVM-SystemC functionality can be used together with the Accellera Systems Initiative (formerly OSCI) SystemC

proof-of-concept library [1].

UVM-SystemC uses existing SystemC functionality wherever suitable, and introduces new UVM classes on top of

the SystemC base classes to facilitate the creation of modular, configurable and reusable verification environments.

Certain UVM in SystemVerilog functionality is available as native SystemC language features, and therefore UVM-

SystemC uses the existing SystemC classes as foundations for the UVM extensions. Also the transaction-level

modeling (TLM) concepts natively exist in SystemC and IEEE Std. 1666-2011, so UVM-SystemC uses the original

SystemC TLM definitions and base classes.

Elements which are part of the UVM-SystemC library and language definition and which are not part of the

UVM 1.1 standard are marked with symbol . Elements marked with symbol are renamed in UVM-SystemC, in

contrast to the UVM 1.1 standard, due to their incompatibility due to reserved keywords in C/C++ or an

inappropriate name in the context of SystemC base class of member function definitions. The reference to the

original UVM 1.1 name is given in brackets and marked with †. Note that these original names are not used in

UVM-SystemC.

[1] As process control extensions are only supported in the Accellera Systems Initiative SystemC 2.3.0 release (or later) of the

proof-of-concept library, it is required to have this library installed prior to UVM-SystemC installation.

UVM-SystemC Language Reference Manual – DRAFT Page 16

2. UVM-SystemC overview

2.1 Namespace

All UVM-SystemC classes and functions shall reside inside the namespace uvm.

2.2 Header files

An application shall include the C++ header file uvm or uvm.h to make use of the UVM-SystemC class library

functions. The header file named uvm shall only add the name uvm to the declarative region in which it is included,

whereas the header file named uvm.h shall add all of the names from the namespace uvm to the declarative region

in which it is included.

NOTEIt is recommended that an application includes the header file uvm rather than the header file uvm.h. This means the

namespace uvm has to be mentioned explicitly when using UVM-SystemC classes and functions. Alternatively, an application

may use the C++ using directive at the global and local scope to gain access to these classes and functions.

2.3 Global functions

A minimal set of global functions is defined in the global namespace offering generic UVM capabilities and

convenience functions for configuration and printing. The global functions are specified in section 3.

2.4 Base classes

These classes define the base UVM class for all other UVM classes, and the base class for data objects:

 uvm_void

 uvm_object

 uvm_root

 uvm_port_base

 uvm_component_name

The base classes are specified in section 4.

2.5 Policy classes

These classes include policy objects for various operations based on class uvm_object:

 The class uvm_printer provides an interface for printing objects of type uvm_object in various formats.

Classes derived from class uvm_printer implement pre-defined printing formats or policies:

 The class uvm_table_printer prints the object in a tabular form.

 The class uvm_tree_printer prints the object in a tree form.

 The class uvm_line_printer prints the information on a single line, but uses the same object separators

as the tree printer.

These printer classes have ‘knobs’ that an application may use to control what and how information is

printed. These knobs are contained in a separate knob class uvm_printer_knobs

Page 17 UVM-SystemC Language Reference Manual – DRAFT

 uvm_comparer: performs deep comparison of objects derived from uvm_object. An application may

configure what is compared and how miscompares are reported.

 uvm_packer: performs packing (serialize) and unpacking of properties.

The policy classes are specified in section 5.

2.6 Registry and factory classes

The registry and factory classes include the uvm_factory and associated classes for object and component

registration. The class uvm_factory implements a factory pattern. A singleton factory instance is created for a given

simulation run. Class types are registered with the factory using the class uvm_object_wrapper and its derivatives.

The class uvm_factory supports type and instance overrides.

The factory classes are:

 uvm_object_wrapper

 uvm_object_registry

 uvm_component_registry

 uvm_factory

The registry and factory classes are specified in section 6.

2.7 Component hierarchy classes

These classes define the base class for hierarchical UVM components and the test environment. The class

uvm_component provides interfaces for:

 Hierarchy—Provides methods for searching and traversing the component hierarchy.

 Configuration—Provides methods for configuring component topology and other parameters before and

during component construction.

 Phasing—Defines a phased test flow that all components follow. Methods include the phase callbacks, such

as run_phase and report_phase, overridden by the derived classes. During simulation, these callbacks are

executed in precise order.

 Factory—Provides a convenience interface to the uvm_factory. The factory is used to create new

components and other objects based on type-wide and instance-specific configuration.

All structural component classes uvm_env, uvm_test, uvm_agent, uvm_driver, uvm_monitor, and

uvm_scoreboard are derived from the class uvm_component.

The UVM component classes are specified in section 7.

2.8 Sequencers classes

The sequencer classes serve as an arbiter for controlling transaction flow from multiple stimulus generators. More

specifically, the sequencer controls the flow of transactions of type uvm_sequence_item generated by one or more

sequences based of type uvm_sequence. The sequencer classes are:

 uvm_sequencer_base:

UVM-SystemC Language Reference Manual – DRAFT Page 18

 uvm_sequencer_param_base

 uvm_sequencer

 uvm_sqr_if_base

The sequencer classes are specified in section 8.

2.9 Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated as a

sequence or sequence item. The following sequence classes are defined:

 uvm_transaction

 uvm_sequence_item

 uvm_sequence_base

 uvm_sequence

The sequence classes are specified in section 0.

2.10 Configuration and resource classes

The configuration and resource classes provide access to the configuration and resource database. The configuration

database is used to store and retrieve both configuration time and run time properties. The configuration and

resource classes are:

 uvm_config_db: Configuration database, which acts as interface on top of the resource database.

 uvm_resource_db: Resource database.

 uvm_resource_options: Provides a namespace for managing options for the resources facility.

 uvm_resource_base: Provides a non-parameterized base class for resources.

 uvm_resource_pool: Provides the global resource database.

 uvm_resource: Defines the parameterized resource.

This configuration and resource classes are specified in section 10.

2.11 Phasing and synchronization classes

The phasing classes define the order of execution of pre-defined callback function and processes, which run either

sequentially or concurrently. In addition, dedicated member functions for synchronization are available to coordinate

the execution of or status of these processes between all UVM components or objects.

The phasing and synchronization classes are:

 uvm_phase: The base class for defining a phase’s behavior, state, context.

 uvm_domain: Phasing schedule node representing an independent branch of the schedule.

 uvm_bottomup_phase: A phase implementation for bottom up function phases.

 uvm_topdown_phase: A phase implementation for top-down function phases.

Page 19 UVM-SystemC Language Reference Manual – DRAFT

 uvm_process_phase (uvm_task_phase†): A phase implementation for phases which are launched as

spawned process.

 uvm_objection: Mechanism to synchronize phases based on passing execution status information between

running processes.

 uvm_callbacks: The base class for implementing callbacks, which are typically used to modify or

augment component behavior without changing the component base class for user-defined callback classes.

 uvm_callback_iter: An class for iterating over callback queues of a specific callback type.

 uvm_callback: The base class for user-defined callback classes.

The phasing and synchronization classes are specified in section 0.

2.12 Reporting classes

The reporting classes provide a facility for issuing reports (messages) with consistent formatting and configurable

side effects, such as logging to a file or exiting simulation. An application can also filter out reports based on their

verbosity, identity, or severity.

The following reporting classes are defined:

 uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

 uvm_report_handler: The class which acting as implementation for the member functions defined in the

class uvm_report_object.

 uvm_report_server: The class acting as global server that processes all of the reports generated by the

class uvm_report_handler.

 uvm_report_catcher: The class which captures and counts all reports issued by the class

uvm_report_server.

The reporting classes are specified in section 12.

2.13 Macros

The UVM-SystemC macros make common code easier to write. It is not imperative to use the macros, but in many

cases the macros can save a substantial amount of user-written code. The macros defined in UVM-SystemC are:

 Macros for component and object registration:

o UVM_OBJECT_UTILS

o UVM_OBJECT_PARAM_UTILS

o UVM_COMPONENT_UTILS

o UVM_COMPONENT_PARAM_UTILS

 Sequence execution macros:

o UVM_DO, UVM_DO_ON and UVM_DO_ON_PRI

o UVM_CREATE, UVM_CREATE_ON

o UVM_DECLARE_P_SEQUENCER

UVM-SystemC Language Reference Manual – DRAFT Page 20

 Reporting macros:

o UVM_INFO, UVM_ERROR, UVM_WARNING and UVM_FATAL

 Callback macros:

o UVM_REGISTER_CB and UVM_DO_CALLBACKS

Detailed information for the macros or the associated member functions are specified in section 13.

2.14 Existing SystemC functionality used in UVM-SystemC

Because SystemVerilog does not support multiple inheritance, UVM-SystemVerilog is constrained to have only one

base class, from which both data elements and hierarchical elements inherit. As SystemC is based on C++, it

supports multiple inheritance. As such, UVM-SystemC uses multiple inheritance where suitable.

In UVM-SystemVerilog, the class uvm_component inherits from class uvm_report_object. In UVM-SystemC,

class uvm_component applies multiple inheritance and derives from the SystemC class sc_core::sc_module and

from uvm_report_object. Note that the class uvm_object is not derived from class sc_core::sc_object, but from

class uvm_void.

The class sc_core::sc_module already offer the hierarchical features that uvm_component needs, namely parent

and children, and a full instance name. Therefore the parent of a component does not need to be explicitly specified

as a constructor argument; instead the class uvm_component_name keeps track of the component hierarchy.

The class sc_core::sc_module has natural equivalents to some of the UVM pre-run phases, which can used in a

UVM-SystemC uvm_component. For example:

 The UVM-SystemC callback before_end_of_elaboration is mapped onto the UVM callback build_phase.

Note that UVM-SystemC also provides the callback build_phase as an alternative to

before_end_of_elaboration. It is recommended to use this UVM member function.

 The UVM-SystemC callback end_of_elaboration is mapped onto the UVM callback

end_of_elaboration_phase. UVM-SystemC also provides the callback end_of_elaboration_phase with

the argument of type uvm_phase as an alternative to the callback end_of_elaboration, which does give

access to the phase information. It is recommended to use this UVM member function.

 The UVM-SystemC callback start_of_simulation is mapped onto the UVM callback

start_of_simulation_phase. UVM-SystemC also provides the callback start_of_simulation_phase with

the argument of type uvm_phase as an alternative to the callback start_of_simulation, which does give

access to the phase information. It is recommended to use this UVM member function.

UVM-SystemC also defines the callback run_phase as a thread process of a uvm_component. This works because

sc_core::sc_module in SystemC already has the ability to own and spawn thread processes.

UVM-SystemVerilog defines the TLM-1 interfaces like put and get, as well as some predefined TLM-1 channels

like tlm::tlm_fifo. These already natively exist in the SystemC standard. UVM-SystemC supports the original

SystemC TLM-1 definitions. The same holds for the analysis interface in UVM. UVM-SystemC offers a

compatibility and convenience layer on top of the SystemC TLM interface proper tlm::tlm_analysis_if and analysis

port tlm::tlm_analysis_port, defining elements such as uvm_analysis_port, uvm_analysis_export and

uvm_analysis_imp.

The SystemC fork-join constructs SC_FORK and SC_JOIN can be used as a pair to bracket a set of calls to

function sc_core::sc_spawn within a UVM component run_phase, enabling the creation of concurrent processes.

Page 21 UVM-SystemC Language Reference Manual – DRAFT

2.15 Methodology for hierarchy construction

The UVM in SystemVerilog recommends the use of configurations by using the static member function set of the

uvm_config_db in the build phase, followed by hierarchy construction through the factory, in the same phase.

In UVM-SystemVerilog, it is necessary to make the connections (port binding) in the connect phase, which happens

after hierarchy construction of components, ports and exports in the build phase. This enables configuration of

port/export construction using the configuration database uvm_config_db. In that case, if a parent creates a child in

the build phase, that child’s port/export does not exist at that point, and it has to wait for the next phase to bind

child’s port/export.

Consistent with UVM in SystemVerilog, UVM-SystemC also recommends configurations using uvm_config_db

and hierarchy construction through the factory uvm_factory in the build phase. This implies that child objects

derived from class uvm_component should be declared as pointers inside the parent class, and these children should

be constructed in the UVM callback build_phase through the UVM factory, which does not contradict the

SystemC standard, as the SystemC standard allows construction activity in the callback

before_end_of_elaboration, which is equivalent to the UVM build phase.

In SystemC, the ports/exports are usually becoming members of a uvm_component and not pointers. In that case,

the ports/exports are automatically created and initialized in the constructor of the parent uvm_component. This

implies that in UVM-SystemC the ports/export construction is not configurable through uvm_config_db. Because

the bulk of the UVM hierarchy construction occurs in the build phase, the port/export bindings that depend on the

entire hierarchy being constructed have to be done in a later phase. Similar as in UVM-SystemVerilog, the connect

phase is introduced in UVM-SystemC to perform the port bindings using the sc_core::sc_port member function

bind or operator(). The UVM binding mechanism using the member function connect of the ports is made

available for compatibility purposes.

UVM-SystemC Language Reference Manual – DRAFT Page 22

3. Global functions

All global functions reside in the UVM namespace. Functions marked with symbol are not compatible with the

UVM 1.1 standard.

3.1 uvm_set_config_int

void uvm_set_config_int(const std::string& inst_name,

 const std::string& field_name,

 int value);

The global function uvm_set_config_int shall create and place an integer in a configuration database. The argument

inst_name shall define the full hierarchical pathname of the object being configured. The argument field_name is the

specific field that is being searched for. Both arguments inst_name and field_name may contain wildcards.

NOTEThis global function is made available since there is no command line interface option to pass configuration data.

3.2 uvm_set_config_string

void uvm_set_config_string(const std::string& inst_name,

 const std::string& field_name,

 const std::string& value);

The global function uvm_set_config_string shall create and place a string in a configuration database. The

argument inst_name shall define the full hierarchical pathname of the object being configured. The argument

field_name is the specific field that is being searched for. Both arguments inst_name and field_name may contain

wildcards.

NOTEThis global function is made available since there is no command line interface option to pass configuration data.

3.3 run_test

void run_test(const std::string& test_name = "");

The function run_test is a convenience function to start member function uvm_root::run_test. (See 4.3.2.1)

Page 23 UVM-SystemC Language Reference Manual – DRAFT

4. Base Classes

4.1 uvm_void

The class uvm_void shall provide the base class for all UVM classes. It shall be an abstract class with no data

members or functions, to allow the creation of a generic container of objects.

An application may derive directly from this class and will inherit none of the UVM functionality, but such classes

may be placed in uvm_void-typed containers along with other UVM objects.

4.1.1 Class definition

namespace uvm {

 class uvm_void {};

} // namespace uvm

4.2 uvm_object

The class uvm_object shall provide the base class for all UVM data and hierarchical classes. Its primary role is to

define a set of member functions for common operations as create, copy, compare, print, and record. Classes

deriving from uvm_object shall implement the member functions such as create and get_type_name.

4.2.1 Class definition

namespace uvm {

 class uvm_object : public uvm_void, public uvm_report_object

 {

 public:

 // Group: Construction

 uvm_object();

 explicit uvm_object(const std::string& name);

 // Group: Identification

 virtual void set_name(const std::string& name);

 virtual const std::string get_name() const;

 virtual const std::string get_full_name() const;

 virtual int get_inst_id() const;

 static int get_inst_count();

 static const uvm_object_wrapper* get_type();

 virtual const uvm_object_wrapper* get_object_type() const;

UVM-SystemC Language Reference Manual – DRAFT Page 24

 virtual const std::string get_type_name() const;

 // Group: Creation

 virtual uvm_object* create(const std::string& name = "");

 virtual uvm_object* clone();

 // Group: Printing

 void print(uvm_printer* printer = NULL) const;

 std::string sprint(uvm_printer* printer = NULL) const;

 virtual void do_print(const uvm_printer& printer) const;

 virtual std::string convert2string() const;

 // Group: Recording

 void record(uvm_recorder* recorder = NULL);

 virtual void do_record(const uvm_recorder& recorder);

 // Group: Copying

 void copy(const uvm_object& rhs);

 virtual void do_copy(const uvm_object& rhs);

 // Group: Comparing

 bool compare(const uvm_object& rhs,

 const uvm_comparer* comparer = NULL) const;

 virtual bool do_compare(const uvm_object& rhs,

 const uvm_comparer* comparer = NULL) const;

 // Group: Packing

 int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);

 int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);

 int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);

 virtual void do_pack(uvm_packer& packer) const;

 // Group: Unpacking

 int unpack(const std::vector<bool>& v, uvm_packer* packer = NULL);

 int unpack_bytes(const std::vector<unsigned char>& v, uvm_packer* packer = NULL);

 int unpack_ints(const std::vector<unsigned int>& v, uvm_packer* packer = NULL);

 virtual void do_unpack(uvm_packer& packer);

Page 25 UVM-SystemC Language Reference Manual – DRAFT

 }; // class uvm_object

} // namespace uvm

4.2.2 Construction

4.2.2.1 Constructors

uvm_object();

explicit uvm_object(const std::string& name);

The constructor shall create a new uvm_object with the given instance name passed as argument. If no argument is

given, the default constructor shall call function sc_core::sc_gen_unique_name(“object”) to generate a unique

string name as instance name of this object.

4.2.3 Identification

4.2.3.1 set_name

virtual void set_name(const std::string& name);

The member function set_name shall set the instance name of this object passed as argument, overwriting any

previously given name. It shall be an error if the name is already in use for another object.

4.2.3.2 get_name

virtual const std::string get_name() const;

The member function get_name shall return the name of the object, as provided by the argument name via the

constructor or member function set_name.

4.2.3.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this object. The default

implementation is the same as get_name, as objects of type uvm_object do not inherently possess hierarchy.

Objects possessing hierarchy, such as objects of type uvm_component, override the default implementation. Other

objects might be associated with component hierarchy, but are not themselves components. For example, sequence

classes of type uvm_sequence are typically associated with a sequencer class of type uvm_sequencer. In this case,

it is useful to override get_full_name to return the sequencer’s full name concatenated with the sequence’s name.

This provides the sequence a full context, which is useful when debugging.

4.2.3.4 get_inst_id

virtual int get_inst_id() const;

UVM-SystemC Language Reference Manual – DRAFT Page 26

The member function get_inst_id shall return the object’s unique, numeric instance identifier.

4.2.3.5 get_inst_count

static int get_inst_count();

The member function get_inst_count shall return the current value of the instance counter, which represents the

total number of objects of type uvm_object that have been allocated in simulation. The instance counter is used to

form a unique numeric instance identifier.

4.2.3.6 get_type

static const uvm_object_wrapper* get_type();

The member function get_type shall return the type-proxy (wrapper) for this object. The uvm_factory’s type-based

override and creation member functions take arguments of uvm_object_wrapper. The default implementation of

this member function shall produce an error and return NULL.

To enable use of this member function, a user’s subtype must implement a version that returns the subtype’s

wrapper.

4.2.3.7 get_object_type

virtual const uvm_object_wrapper* get_object_type() const;

The member function get_object_type shall the return the type-proxy (wrapper) for this object. The uvm_factory’s

type-based override and creation member functions take arguments of uvm_object_wrapper. The default

implementation of this member function does a factory lookup of the proxy using the return value from

get_type_name. If the type returned by get_type_name is not registered with the factory, then the member function

shall return NULL.

This member function behaves the same as the static member function get_type, but uses an already allocated object

to determine the type-proxy to access (instead of using the static object).

4.2.3.8 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object, which is typically the type identifier

enclosed in quotes. It is used for various debugging functions in the library, and it is used by the factory for creating

objects.

4.2.4 Creation

4.2.4.1 create

virtual uvm_object* create(const std::string& name = "");

The member function create shall allocate a new object of the same type as this object and returns it via a base

handle uvm_object. Every class deriving from uvm_object, directly or indirectly, shall implement the member

function create.

Page 27 UVM-SystemC Language Reference Manual – DRAFT

4.2.4.2 clone

virtual uvm_object* clone();

The member function clone shall create and return an exact copy of this object.

NOTEAs the member function clone is virtual, derived classes may override this implementation if desired.

4.2.5 Printing

4.2.5.1 print

void print(uvm_printer* printer = NULL) const;

The member function print shall deep-print this object’s properties in a format and manner governed by the given

argument printer. If the argument printer is not provided, the global uvm_default_printer shall be used (see

5.7.1.4)

The member function print is not virtual and shall not be overloaded. To include custom information in the print

and sprint operations, derived classes shall override the member function do_print and can use the provided printer

policy class to format the output.

4.2.5.2 sprint

std::string sprint(uvm_printer* printer = NULL) const;

The member function sprint shall return the object’s properties as a string and manner governed by the given

argument printer. If the argument printer is not provided, the global uvm_default_printer shall be used (see

5.7.1.4)

The member function sprint is not virtual and must not be overloaded. To include additional fields in the print and

sprint operation, derived classes must override the member function do_print and use the provided printer policy

class to format the output. The printer policy will manage all string concatenations and provide the string to sprint

to return to the caller.

4.2.5.3 do_print

virtual void do_print(const uvm_printer& printer) const;

The member function do_print shall provide a context called by the member functions print and sprint that allows

an application to customize what gets printed. The argument printer is the policy object that governs the format and

content of the output. To ensure correct print and sprint operation, and to ensure a consistent output format, the

printer shall be used by all do_print implementations.

4.2.5.4 convert2string

virtual std::string convert2string() const;

The member function do_print shall provide a context which may be called directly by the application, to provide

object information in the form of a string. Unlike the member function sprint, there is no requirement to use a

UVM-SystemC Language Reference Manual – DRAFT Page 28

uvm_printer policy object. As such, the format and content of the output is fully customizable, which may be

suitable for applications not requiring the consistent formatting offered by the print/sprint/do_print API.

4.2.6 Recording

4.2.6.1 record

void record(uvm_recorder* recorder = NULL);

The member function record shall deep-records this object’s properties according to an optional recorder policy.

The member function is not virtual and shall not be overloaded. To include additional fields in the record operation,

derived classes should override the member function do_record.

The optional argument recorder specifies the recording policy, which governs how recording takes place. If a

recorder policy is not provided explicitly, then the global uvm_default_recorder policy is used (see 5.7.1.7).

NOTEThe recording mechanism is vendor-specific. By providing access via a common interface, the uvm_recorder policy

provides vendor-independent access to a simulator’s recording capabilities.

4.2.6.2 do_record

virtual void do_record(const uvm_recorder& recorder);

The member function do_record shall provide a context called by the member function record. A derived class

should overload this member function to include its fields in a record operation.

The argument recorder is policy object for recording this object. A do_record implementation should call the

appropriate recorder member function for each of its fields.

NOTEVendor-specific recording implementations are encapsulated in the recorder policy, thereby insulating user-code from

vendor-specific behavior.

4.2.7 Copying

4.2.7.1 copy

void copy(const uvm_object& rhs);

The member function copy shall make a copy of the specified object passed as argument.

NOTEThe member function is not virtual and should not be overloaded in derived classes. To copy the fields of a derived class,

that class should overload the member function do_copy.

4.2.7.2 do_copy

virtual void do_copy(const uvm_object& rhs);

The member function do_copy shall provide a context called by the member function copy. A derived class should

overload this member function to include its fields in a copy operation.

Page 29 UVM-SystemC Language Reference Manual – DRAFT

4.2.8 Comparing

4.2.8.1 compare

bool compare(const uvm_object& rhs,

 const uvm_comparer* comparer = NULL) const;

The member function compare shall compare members of this data object with those of the object provided in the

rhs (right-hand side) argument. It shall return true on a match; otherwise it shall return false.

The optional argument comparer specifies the comparison policy. It allows an application to control some aspects of

the comparison operation. It also stores the results of the comparison, such as field-by-field miscompare information

and the total number of miscompares. If a compare policy is not provided or set to NULL, then the global

uvm_default_comparer policy is used (see 5.7.1.6).

NOTEThe member function is not virtual and should not be overloaded in derived classes. To compare the fields of a derived

class, that class should overload the member function do_compare.

4.2.8.2 do_compare

virtual bool do_compare(const uvm_object& rhs,

 const uvm_comparer* comparer = NULL) const;

The member function do_compare shall provide a context called by the member function compare. A derived class

should overload this member function to include its fields in a compare operation. The member function shall return

true if the comparison succeeds; otherwise it shall return false.

4.2.9 Packing

4.2.9.1 pack

int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);

The member function pack shall concatenate the object properties into a vector of bits. The member function shall

return the total number of bits packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy

is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

NOTEThe member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

pack operation, derived classes should overload the member function do_pack.

4.2.9.2 pack_bytes

int pack_bytes(std::vector<char>& bytestream, uvm_packer* packer = NULL);

The member function pack_bytes shall concatenate the object properties into a vector of bytes. The member

function shall return the total number of bytes packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy

is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

UVM-SystemC Language Reference Manual – DRAFT Page 30

NOTEThe member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

pack operation, derived classes should overload the member function do_pack.

4.2.9.3 pack_ints

int pack_ints(std::vector<int>& intstream, uvm_packer* packer = NULL);

The member function pack_ints shall concatenate the object properties into a vector of integers. The member

function shall return the total number of integers packed into the given vector.

The optional argument packer specifies the packing policy, which governs the packing operation. If a packer policy

is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

NOTEThe member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

pack operation, derived classes should overload the member function do_pack.

4.2.9.4 do_pack

virtual void do_pack(uvm_packer& packer) const;

The member function do_pack shall provide a context called by the member functions pack, pack_bytes and

pack_ints. A derived class should overload this member function to include its fields in a packing operation.

The argument packer is the policy object for packing and should be used to pack objects.

4.2.10 Unpacking

4.2.10.1 unpack

int unpack(const std::vector<bool>& bitstream, uvm_packer* packer = NULL);

The member function unpack shall extract the values from a vector of bits. The member function shall return the

total number of bits unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs both the pack and unpack operation. If a

packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

NOTE 1The member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

unpack operation, derived classes should overload the member function do_unpack.

NOTE 2The application of the member function for unpacking shall exactly correspond to the member function for packing.

This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of

packing used to create the input vector.

4.2.10.2 unpack_bytes

int unpack_bytes(const std::vector<char>& bytestream, uvm_packer* packer = NULL);

The member function unpack_bytes shall extract the values from a vector of bytes. The member function shall

return the total number of bytes unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If a

packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

Page 31 UVM-SystemC Language Reference Manual – DRAFT

NOTE 1The member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

unpack operation, derived classes should overload the member function do_unpack.

NOTE 2The application of the member function for unpacking shall exactly correspond to the member function for packing.

This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of

packing used to create the input vector.

4.2.10.3 unpack_ints

int unpack_ints(const std::vector<int>& intstream, uvm_packer* packer = NULL);

The member function unpack_ints shall extract the values from a vector of integers. The member function shall

return the total number of integers unpacked from the given vector.

The optional argument packer specifies the packing policy, which governs the pack and unpack operation. If a

packer policy is not provided or set to NULL, the global uvm_default_packer policy shall be used (see 5.7.1.5).

NOTE 1The member function is not virtual and should not be overloaded in derived classes. To include additional fields in the

unpack operation, derived classes should overload the member function do_unpack.

NOTE 2The application of the member function for unpacking shall exactly correspond to the member function for packing.

This is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of

packing used to create the input vector.

4.2.10.4 do_unpack

virtual void do_unpack(uvm_packer& packer) const;

The member function do_unpack shall provide a context called by the member functions unpack, unpack_bytes

and unpack_ints. A derived class should overload this member function to include its fields in a unpacking

operation. The member function shall return true if the unpacking succeeds; otherwise it shall return false.

The argument packer is the policy object for unpacking and should be used to unpack objects.

NOTEThe application of the member function for unpacking shall exactly correspond to the member function for packing. This

is assured if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking is the same as the order of

packing used to create the input vector.

4.2.11 Object macros

UVM-SystemC provides the following macros for a uvm_object:

 utility macro UVM_OBJECT_UTILS(classname) is to be used inside the class definition that expands to:

o The declaration of the member function get_type_name, which returns the type of a class as string

o The declaration of the member function get_type, which returns a factory proxy object for the

type

o The declaration of the proxy class uvm_object_registry<classname> used by the factory.

Template classes shall use the macro UVM_OBJECT_PARAM_UTILS, to guarantee correct registration of one or

more parameters passed to the class template. Note that template classes are not evaluated at compile-time, and thus

not registered with the factory. Due to this, name-based lookup with the factory for template classes is not possible.

Instead, an application shall use the member function get_type for factory overrides.

UVM-SystemC Language Reference Manual – DRAFT Page 32

4.3 uvm_root

The class uvm_root serves as the implicit top-level and phase controller for all UVM components. An application

shall not directly instantiate uvm_root. A UVM implementation shall create a single instance of uvm_root that an

application can access via the global variable uvm_top.

4.3.1 Class definition

namespace uvm {

 class uvm_root : public uvm_component

 {

 public:

 static uvm_root* get();

 // Group: Simulation control

 virtual void run_test(const std::string& test_name = "");

 virtual void die();

 void set_timeout(const sc_core::sc_time& timeout, bool overridable = true);

 void finish_on_completion(bool enable = true);

 // Group: Topology

 uvm_component* find(const std::string& comp_match);

 void find_all(const std::string& comp_match,

 std::vector<uvm_component*>& comps,

 uvm_component* comp = NULL);

 void print_topology(uvm_printer* printer = NULL);

 void enable_print_topology(bool enable = true);

 // Global variable

const uvm_root* uvm_top;

 }; // class uvm_root

} // namespace uvm

4.3.2 Simulation control

4.3.2.1 run_test

virtual void run_test(const std::string& test_name = "");

Page 33 UVM-SystemC Language Reference Manual – DRAFT

The member function run_test shall register the test component and the UVM phasing mechanism. If the optional

argument test_name is provided, then the specified component is created just prior to phasing, if and only if this

component is derived from class uvm_test. Otherwise it shall be an error. The test component may contain new

verification components or the entire testbench, in which case the test and testbench can be chosen from.

The phasing mechanism is used during test execution, where all components are called following a defined set of

registered phases. The member function run_test will register both the common phases as well as the UVM run-

time phases. (See section 0).

NOTE 1Selection of the test via the command line interface is not yet available.

NOTE 2The test execution is started using the SystemC function sc_core::sc_start. It is recommended not to specify the

simulation stop time, as the end-of-test is automatically managed by the phasing mechanism.

4.3.2.2 die

virtual void die();

The member function die shall be called by the report server if a report reaches the maximum quit count or has a

UVM_EXIT action associated with it, e.g., as with fatal errors. The member function shall call the member function

uvm_component::pre_abort on the entire UVM component hierarchy in a bottom-up fashion. It then shall call

uvm_report_server::report_summarize and terminates the simulation.

4.3.2.3 set_timeout

void set_timeout(const sc_core::sc_time& timeout, bool overridable = true);

The member function set_timeout shall define the timeout for the run phases. If not called, the default timeout shall

be set to UVM_DEFAULT_TIMEOUT (see 15.1.2).

4.3.2.4 finish_on_completion

void finish_on_completion(bool enable = true);

The member function finish_on_completion shall define how simulation is finalized. If enabled, it shall execute all

end_of_simulation callbacks of the UVM components involved. If disabled, simulation is finalized without calling

these end_of_simulation callbacks. By default, the end_of_simulation callbacks are not executed, unless enabled

by the application by calling this member function.

NOTEAn implementation may call the function sc_core::sc_stop as part of the finish_on_completion implementation to

enforce finalization of the simulation following the SystemC execution semantics.

4.3.3 Topology

4.3.3.1 find

uvm_component* find(const std::string& comp_match);

The member function find shall return a component handle matching the given string comp_match. The string may

contain the wildcards ‘*’ and ‘?’. Strings beginning with character ‘.’ are absolute path names.

UVM-SystemC Language Reference Manual – DRAFT Page 34

4.3.3.2 find_all

void find_all(const std::string& comp_match,

 std::vector<uvm_component*>& comps,

 uvm_component* comp = NULL);

The member function find_all shall return a vector of component handles matching the given string comp_match.

The string may contain the wildcards ‘*’ and ‘?’. Strings beginning with character ‘.’ are absolute path names. If the

optional component argument comp is provided, then the search begins from that component down; otherwise it

searches all components.

4.3.3.3 print_topology

void print_topology(uvm_printer* printer = NULL);

The member function print_topology shall print the verification environment’s component topology. The argument

printer shall be an object of class uvm_printer that controls the format of the topology printout; a NULL printer

prints with the default output.

4.3.3.4 enable_print_topology

void enable_print_topology(bool enable = true);

The member function enable_print_topology shall print the entire testbench topology just after completion of the

end_of_elaboration phase, if enabled. By default, the testbench topology is not printed, unless enabled by the

application by calling this member function.

4.3.4 Global variable

4.3.4.1 uvm_top

const uvm_root* uvm_top;

The data member uvm_top is a handle to the top-level (root) component that governs phase execution and provides

the component search interface. By default, this handle is provided by the uvm_root singleton.

The uvm_top instance of uvm_root plays several key roles in the UVM:

 Implicit top-level: The uvm_top serves as an implicit top-level component. Any UVM component which is

not instantiated in another UVM component (e.g. when instantiated in an sc_core::sc_module or in

sc_main) becomes a child of uvm_top. Thus, all UVM components in simulation are descendants of

uvm_top.

 Phase control: uvm_top manages the phasing for all components.

 Search: An application may use uvm_top to search for components based on their hierarchical name. See

member functions find and find_all.

 Report configuration: An application may use uvm_top to globally configure report verbosity, log files,

and actions. For example, uvm_top.set_report_verbosity_level_hier(UVM_FULL) would set full

verbosity for all components in simulation.

Page 35 UVM-SystemC Language Reference Manual – DRAFT

 Global reporter: Because uvm_top is globally accessible, the UVM reporting mechanism is accessible

from anywhere outside uvm_component, such as in modules and sequences. See uvm_report_error,

uvm_report_warning, and other global methods.

The uvm_top instance checks during the end_of_elaboration_phase if any errors have been generated so far. If

errors are found a UVM_FATAL error is being generated as result so that the simulation will not continue to the

start_of_simulation_phase.

4.4 uvm_port_base

The class uvm_port_base shall provide methods to bind ports to interfaces or to other ports or exports, and to

forward interface method calls to the channel to which the port is bound, according to the same mechanism as

defined in SystemC. Therefore this class shall be derived from the class sc_core::sc_port.

4.4.1 Class definition

namespace uvm {

 template <class IF>

 class uvm_port_base : public sc_core::sc_port<IF>

 {

 public:

 uvm_port_base();

 explicit uvm_port_base(const std::string& name);

 virtual const std::string get_name() const;

 virtual const std::string get_full_name() const;

 virtual uvm_component* get_parent() const;

 virtual const std::string get_type_name() const;

 virtual void connect(IF&);

 virtual void connect(uvm_port_base<IF>&);

 // class uvm_port_base

} // namespace uvm

4.4.2 Template parameter IF

The template parameter IF shall specify the name of the interface type used for the port. The port can only be bound

to a channel which is derived from the same type, or to another port or export which is derived from this type.

UVM-SystemC Language Reference Manual – DRAFT Page 36

4.4.3 Constructor

uvm_port_base();

explicit uvm_port_base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name, if passed as an argument.

4.4.4 Member functions

4.4.4.1 get_name

virtual const std::string get_name() const;

The member function get_name shall return the leaf name of this port.

4.4.4.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of this port.

4.4.4.3 get_parent

virtual uvm_component* get_parent() const;

The member function get_parent shall return the handle to this port’s parent, or NULL if it has no parent.

4.4.4.4 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name to this port. Derived port classes shall implement

this member function to return the concrete type.

4.4.4.5 connect

virtual void connect(IF&);

virtual void connect(uvm_port_base<IF>&);

The member function connect shall bind this port to the interface given as argument.

NOTEThe member function connect implements the same functionality as the SystemC member function bind.

4.5 uvm_component_name

The class uvm_component_name is shall provide the mechanism for building the hierarchical names of component

instances and component hierarchy during elaboration.

An implementation shall maintain the UVM component hierarchy, that is, it shall build a list of hierarchical

component names, where each component instance is named as if it were a child of another component (its parent).

The mechanism to implement such component hierarchy is implementation-defined.

Page 37 UVM-SystemC Language Reference Manual – DRAFT

NOTE 1The hierarchical name of an instance in the component hierarchy is returned from member function get_full_name of

class uvm_component, which is the base class of all component instances.

NOTE 2An object of type uvm_object may have a hierarchical name and may have a parent in the component hierarchy, but

such object is not part of the component hierarchy.

4.5.1 Class definition

namespace uvm {

 class uvm_component_name

 {

 public:

 uvm_component_name(const char* name);

 uvm_component_name(const uvm_component_name& name);

 ~uvm_component_name();

 operator const char*() const;

 private:

 // Disabled

 uvm_component_name();

 uvm_component_name& operator= (const uvm_component_name& name);

 }; // class uvm_component_name

} // namespace uvm

4.5.2 Constraints on usage

The class uvm_component_name shall only be used as argument in a constructor of a class derived from class

uvm_component. Such constructor shall only contain this argument of type uvm_component_name.

4.5.3 Constructor

uvm_component_name(const char* name);

The constructor uvm_component_name(const char* name) shall store the name in the component hierarchy. The

constructor argument name shall be used as the string name for that component being instantiated within the

component hierarchy.

NOTEAn application shall define for each class derived directly or indirectly from class uvm_component a constructor with a

single argument of type uvm_component_name, where the constructor uvm_component_name(const char*) is called as an

implicit conversion.

uvm_component_name(const uvm_componet_name& name);

UVM-SystemC Language Reference Manual – DRAFT Page 38

The constructor uvm_component_name(const uvm_component_name& name) shall copy the constructor

argument but shall not modify the component hierarchy.

NOTEWhen an application derives a class directly or indirectly from class uvm_component, the derived class constructor calls

the base class constructor with an argument of class uvm_component_name and thus this copy constructor is called.

4.5.4 Destructor

~uvm_component_name();

The destructor shall remove the object from the component hierarchy if, and only if, the object being destroyed was

constructed by using the constructor signature uvm_component_name(const char* name).

4.5.5 operator const char*

operator const char*() const;

This conversion function shall return the string name (not the hierarchical name) associated with the

uvm_component_name.

Page 39 UVM-SystemC Language Reference Manual – DRAFT

5. Policy classes

The UVM policy classes provide specific tasks for printing, comparing, recording, packing, and unpacking of

objects derived from class uvm_object. They are implemented separately from class uvm_object so that an

application can plug in different ways to print, compare, etc. without modifying the object class being operated on.

The user can simply apply a different printer or compare “policy” to change how an object is printed or compared.

Each policy class includes several user-configurable parameters that control the operation. An application may also

customize operations by deriving new policy subtypes from these base types. For example, the UVM provides four

different printer policy classes derived from the policy base class uvm_printer, each of which print objects in a

different format.

The following policy classes are defined:

 uvm_packer

 uvm_printer, uvm_table_printer, uvm_tree_printer, uvm_line_printer and uvm_printer_knobs.

 uvm_recorder

 uvm_comparer

5.1 uvm_packer

The class uvm_packer provides a policy object for packing and unpacking objects of type uvm_object. The

policies determine how packing and unpacking should be done. Packing an object causes the object to be placed into

a packed array of type byte or int. Unpacking an object causes the object to be filled from the pack array. The logic

values X and Z are lost on packing. The maximum size of the packed array is limited to 4096.

5.1.1 Class definition

namespace uvm {

 class uvm_packer

 {

 public:

 // Group: Packing

 virtual void pack_field(const uvm_bitstream_t& value, int size);

 virtual void pack_field_int(const uvm_integral_t& value, int size);

 virtual void pack_string(const std::string& value);

 virtual void pack_time(const sc_core::sc_time& value);

 virtual void pack_real(double value);

 virtual void pack_real(float value);

 virtual void pack_object(const uvm_object& value);

 virtual uvm_packer& operator<< (bool value);

 virtual uvm_packer& operator<< (double& value);

UVM-SystemC Language Reference Manual – DRAFT Page 40

 virtual uvm_packer& operator<< (float& value);

 virtual uvm_packer& operator<< (char value);

 virtual uvm_packer& operator<< (unsigned char value);

 virtual uvm_packer& operator<< (short value);

 virtual uvm_packer& operator<< (unsigned short value);

 virtual uvm_packer& operator<< (int value);

 virtual uvm_packer& operator<< (unsigned int value);

 virtual uvm_packer& operator<< (long value);

 virtual uvm_packer& operator<< (unsigned long value);

 virtual uvm_packer& operator<< (long long value);

 virtual uvm_packer& operator<< (unsigned long long value);

 virtual uvm_packer& operator<< (const std::string& value);

 virtual uvm_packer& operator<< (const char* value);

 virtual uvm_packer& operator<< (const uvm_object& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_logic& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_bv_base& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_lv_base& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_int_base& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_uint_base& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_signed& value);

 virtual uvm_packer& operator<< (const sc_dt::sc_unsigned& value);

 template <class T>

 uvm_packer& operator<< (const std::vector<T>& value);

 // Group: Unpacking

 virtual bool is_null();

 virtual uvm_integral_t unpack_field_int(int size);

 virtual uvm_bitstream_t unpack_field(int size);

 virtual std::string unpack_string(int num_chars = -1);

 virtual sc_core::sc_time unpack_time();

 virtual double unpack_real();

 virtual float unpack_real();

 virtual void unpack_object(uvm_object& value);

 virtual unsigned int get_packed_size() const;

 virtual uvm_packer& operator>> (bool& value);

 virtual uvm_packer& operator>> (double& value);

Page 41 UVM-SystemC Language Reference Manual – DRAFT

 virtual uvm_packer& operator>> (float& value);

 virtual uvm_packer& operator>> (char& value);

 virtual uvm_packer& operator>> (unsigned char& value);

 virtual uvm_packer& operator>> (short& value);

 virtual uvm_packer& operator>> (unsigned short& value);

 virtual uvm_packer& operator>> (int& value);

 virtual uvm_packer& operator>> (unsigned int& value);

 virtual uvm_packer& operator>> (long& value);

 virtual uvm_packer& operator>> (unsigned long& value);

 virtual uvm_packer& operator>> (long long& value);

 virtual uvm_packer& operator>> (unsigned long long& value);

 virtual uvm_packer& operator>> (std::string& value);

 virtual uvm_packer& operator>> (uvm_object& value);

 virtual uvm_packer& operator>> (sc_dt::sc_logic& value);

 virtual uvm_packer& operator>> (sc_dt::sc_bv_base& value);

 virtual uvm_packer& operator>> (sc_dt::sc_lv_base& value);

 virtual uvm_packer& operator>> (sc_dt::sc_int_base& value);

 virtual uvm_packer& operator>> (sc_dt::sc_uint_base& value);

 virtual uvm_packer& operator>> (sc_dt::sc_signed& value);

 virtual uvm_packer& operator>> (sc_dt::sc_unsigned& value);

 template <class T>

 virtual uvm_packer& operator>> (std::vector<T>& value);

 // Data members (variables)

 bool physical;

 bool abstract;

 bool use_metadata;

 bool big_endian;

 private:

 // Disabled

 uvm_packer();

 }; // class uvm_packer

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 42

5.1.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_packer.

5.1.3 Packing

5.1.3.1 pack_field

virtual void pack_field(const uvm_bitstream_t& value, int size);

The member function pack_field shall pack an integral value (less than or equal to 4096 bits) into the packed array.

The argument size is the number of bits of value to pack.

5.1.3.2 pack_field_int

virtual void pack_field_int(const uvm_integral_t& value, int size);

The member function pack_field_int shall pack the integral value (less than or equal to 64 bits) into the packed

array. The argument size is the number of bits of value to pack.

NOTEThis member function is the optimized version of pack_field is useful for sizes up to 64 bits.

5.1.3.3 pack_string

virtual void pack_string(const std::string& value);

The member function pack_string shall pack a string value into the packed array. When the variable metadata is

set, the packed string is terminated by a NULL character to mark the end of the string.

5.1.3.4 pack_time

virtual void pack_time(const sc_core::sc_time& value);

The member function pack_time shall pack a time value as 64 bits into the packed array.

5.1.3.5 pack_real

virtual void pack_real(double value);

virtual void pack_real(float value);

The member function pack_real shall pack a real value as binary vector into the packed array. When the argument

is a double precision floating point value of type double, a 64 bit binary vector shall be used. When the argument is

a single precision floating point value of type float, a 32 bit binary vector shall be used. The convertion of the

floating point representation to binary vector shall be according to the IEEE Standard for Floating-Point Arithmetic

(IEEE Std. 754-1985).

5.1.3.6 pack_object

virtual void pack_object(const uvm_object& value);

Page 43 UVM-SystemC Language Reference Manual – DRAFT

The member function pack_object shall pack an object value into the packed array. A 4-bit header is inserted ahead

of the string to indicate the number of bits that was packed. If a NULL object was packed, then this header will be 0.

5.1.4 Unpacking

5.1.4.1 is_null

virtual bool is_null();

The member function is_null shall be used during unpack operations to peek at the next 4-bit chunk of the pack data

and determine if it is 0. If the next four bits are all 0, then the return value is a true; otherwise it returns false.

NOTEThis member function is useful when unpacking objects, to decide whether a new object needs to be allocated or not.

5.1.4.2 unpack_field_int

virtual uvm_integral_t unpack_field_int(int size);

The member function unpack_field_int shall unpack bits from the packed array and returns the bit-stream that was

unpacked. The argument size is the number of bits to unpack; the maximum is 64 bits.

NOTEThis member function is a more efficient variant than unpack_field when unpacking into smaller vectors.

5.1.4.3 unpack_field

virtual uvm_bitstream_t unpack_field(int size);

The member function unpack_field shall unpack bits from the packed array and returns the bit-stream that was

unpacked. The argument size is the number of bits to unpack; the maximum is 4096 bits.

5.1.4.4 unpack_string

virtual std::string unpack_string(int num_chars = -1);

The member function unpack_string shall unpack a string. The argument num_chars specifies the number of bytes

that are unpacked into a string. If num_chars is -1, then unpacking stops on at the first NULL character that is

encountered.

5.1.4.5 unpack_time

virtual sc_core::sc_time unpack_time();

The member function unpack_time shall unpack the next 64 bits of the packed array and places them into a time

variable.

5.1.4.6 unpack_real

virtual double unpack_real();

virtual float unpack_real();

UVM-SystemC Language Reference Manual – DRAFT Page 44

The member function unpack_real shall unpack the next 64 bits of the packed array and places them into a real

variable. The 64 bits of packed data shall be converted to double precision floating point notation according to the

IEEE Standard for Floating-Point Arithmetic (IEEE Std. 754-1985).

5.1.4.7 unpack_object

virtual void unpack_object(uvm_object& value);

The member function unpack_object shall unpack an object and stores the result into value. Argument value must

be an allocated object that has enough space for the data being unpacked. The first four bits of packed data are used

to determine if a null object was packed into the array. The member function is_null can be used to peek at the next

four bits in the pack array before calling this member function.

5.1.4.8 get_packed_size

virtual unsigned int get_packed_size() const;

The member function get_packed_size returns the number of bits that were packed.

5.1.5 operator <<, operator>>

The class uvm_packer defines operator<< for packing, and operator >> for unpacking basic C++ types, SystemC

types, the type uvm_object, and std::vector types. The supported data types are:

 Basic C++ types: bool, double, float, char, unsigned char, short, unsigned short, int, unsigned int, long,

unsigned long, long long, unsigned long long.

 SystemC types: sc_dt::sc_logic, sc_dt::sc_bv, sc_dt::sc_lv, sc_dt::sc_int, sc_dt::sc_uint,

sc_dt::sc_signed, and sc_dt::sc_unsigned.

 String of type std::string and const char*

o When packing, an additional NULL byte is packed after the string is packed.

 Any type that derives from class uvm_object

 Vector types: std::vector<T>, where T is one of the supported data types listed above, and has an

operator<< defined for it:

o When packing, additional 32 bits are packed indicating the size of the vector, prior to packing

individual elements.

An application may use operator<< or operator>> for the implementation of the member function do_pack and

do_unpack as part of an application-specific object definition derived from class uvm_object.

5.1.6 Data members (variables)

5.1.6.1 physical

bool physical;

The data member physical shall provides a filtering mechanism for fields. The abstract and physical settings allow

an object to distinguish between two different classes of fields. An application may, in the member functions

Page 45 UVM-SystemC Language Reference Manual – DRAFT

uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter. By default, the

data member physical is set to true in the constructor of uvm_packer.

5.1.6.2 abstract

bool abstract;

The data member abstract shall provides a filtering mechanism for fields. The abstract and physical settings allow

an object to distinguish between two different classes of fields. An application may, in the member functions

uvm_object::do_pack and uvm_object::do_unpack, test the setting of this field, to use it as a filter. By default, the

data member abstract is set to false in the constructor of uvm_packer.

5.1.6.3 use_metadata

bool use_metadata;

The data member use_metadata shall indicate whether to encode metadata when packing dynamic data, or to

decode metadata when unpacking. Implementations of uvm_object::do_pack and uvm_object::do_unpack should

regard this bit when performing their respective operation. When set to true, metadata should be encoded as follows:

 For strings, pack an additional NULL byte after the string is packed.

 For objects, pack 4 bits prior to packing the object itself. Use 0b0000 to indicate the object being packed is

null, otherwise pack 0b0001 (the remaining 3 bits are reserved).

 For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size of the array prior to to

packing individual elements.

5.1.6.4 big_endian

bool big_endian;

The data member big_endian shall determine the order that integral data is packed (using the member functions

pack_field, pack_field_int, pack_time, or pack_real) and how the data is unpacked from the pack array (using the

member functions unpack_field, unpack_field_int, unpack_time, or unpack_real). By default, the data member

is set to true in the constructor of uvm_packer. When the data member is set, data is associated msb to lsb;

otherwise, it is associated lsb to msb.

5.2 uvm_printer

The class uvm_printer shall provide the basic printer functionality, which shall be overloaded by derived classes to

support various pre-defined printing formats.

5.2.1 Class definition

namespace uvm {

 class uvm_printer

 {

UVM-SystemC Language Reference Manual – DRAFT Page 46

 public:

 // Group: Printing types

 virtual void print_field(const std::string& name,

 const uvm_bitstream_t& value,

 int size = -1,

 uvm_radix_enum radix = UVM_NORADIX,

 const char* scope_separator = ".",

 const std::string& type_name = "") const;

 virtual void print_field_int(const std::string& name,

 const uvm_integral_t& value,

 int size = -1,

 uvm_radix_enum radix = UVM_NORADIX,

 const char* scope_separator = ".",

 const std::string& type_name = "") const;

 virtual void print_real(const std::string& name,

 double value,

 const char* scope_separator = ".") const;

 virtual void print_real(const std::string& name,

 float value,

 const char* scope_separator = ".") const;

 virtual void print_object(const std::string& name,

 uvm_object* value,

 const char* scope_separator = ".") const;

 virtual void print_object_header(const std::string& name,

 uvm_object* value,

 const char* scope_separator = ".") const;

 virtual void print_string(const std::string& name,

 const std::string& value,

 const char* scope_separator = ".") const;

 virtual void print_time(const std::string& name,

 const sc_core::sc_time& value,

Page 47 UVM-SystemC Language Reference Manual – DRAFT

 const char* scope_separator = ".") const;

 virtual void print_generic(const std::string& name,

 const std::string& type_name,

 int size,

 const std::string& value,

 const char* scope_separator = ".") const;

 // Group: Printer subtyping

 virtual std::string emit();

 virtual std::string format_row(const uvm_printer_row_info& row);

 virtual std::string format_header();

 virtual std::string format_footer();

 std::string adjust_name(const std::string& id,

 const char* scope_separator = ".") const;

 virtual void print_array_header(const std::string& name,

 int size,

 const std::string& arraytype = "array",

 const char* scope_separator = ".") const;

 void print_array_range(int min, int max) const;

 void print_array_footer(int size = 0) const;

 // Data members

 uvm_printer_knobs knobs;

 protected:

 // Disabled

 uvm_printer();

 }; // class uvm_printer

} // namespace uvm

5.2.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_printer.

UVM-SystemC Language Reference Manual – DRAFT Page 48

5.2.3 Printing types

5.2.3.1 print_field

virtual void print_field(const std::string& name,

 const uvm_bitstream_t& value,

 int size = -1,

 uvm_radix_enum radix = UVM_NORADIX,

 const char* scope_separator = ".",

 const std::string& type_name = "");

The member function print_field shall print a field of type uvm_bitstream_t. The argument name defines the name

of the field. The argument value contains the value of the field. The argument size defines the number of bits of the

field. The argument radix defined radix to use for printing. The printer knob for radix is used if no radix is specified.

The argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.

Typical values for the separator are a “.” (dot) or “[” (open bracket).

5.2.3.2 print_field_int

virtual void print_field_int(const std::string& name,

 const uvm_integral_t& value,

 int size = -1,

 uvm_radix_enum radix = UVM_NORADIX,

 const char* scope_separator = ".",

 const std::string& type_name = "");

The member function print_field_int shall print an integer field. The argument name defines the name of the field.

The argument value contains the value of the field. The argument size defines the number of bits of the field. The

argument radix defined radix to use for printing. The printer knob for radix is used if no radix is specified. The

argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.

Typical values for the separator are a “.” (dot) or “[” (open bracket).

5.2.3.3 print_real

virtual void print_real(const std::string& name,

 double value,

 const char* scope_separator = ".");

The member function print_real shall print a real (double) field. The argument name defines the name of the field.

The argument value contains the value of the field. The argument scope_separator is used to find the leaf name

since many printers only print the leaf name of a field.

5.2.3.4 print_double

virtual void print_double(const std::string& name,

Page 49 UVM-SystemC Language Reference Manual – DRAFT

 double value,

 const char* scope_separator = ".");

The member function print_double shall print a real (double) field. The argument name defines the name of the

field. The argument value contains the value of the field. The argument scope_separator is used to find the leaf

name since many printers only print the leaf name of a field.

NOTEThis member function has been introduced to be more compatible with C++/SystemC coding styles and types. The

member function has similar functionality as print_real.

5.2.3.5 print_object

virtual void print_object(const std::string& name,

 const uvm_object& value,

 const char* scope_separator = ".") const;

The member function print_object shall print an object. The argument name defines the name of the object. The

argument value contains the reference to the object. The argument scope_separator is used to find the leaf name

since many printers only print the leaf name of the object.

Whether the object is recursed depends on a variety of knobs, such as the depth knob; if the current depth is at or

below the depth setting, then the object is not recursed. By default, the children of objects of type uvm_component

are printed. To disable automatically printing of these objects, an application can set the member function

uvm_component::print_enabled to false for the specific children to be excluded from printing.

5.2.3.6 print_object_header

virtual void print_object_header(const std::string& name,

 const uvm_object& value,

 const char* scope_separator = ".") const;

The member function print_object_header shall print an object header. The argument name defines the name of the

object. The argument value contains the reference to the object. The argument scope_separator is used to find the

leaf name since many printers only print the leaf name of a field.

5.2.3.7 print_string

virtual void print_string(const std::string& name,

 const std::string& value,

 const char* scope_separator = ".");

The member function print_string shall print a string field. The argument name defines the name of the field. The

argument value contains the value of the field. The argument scope_separator is used to find the leaf name since

many printers only print the leaf name of a field.

5.2.3.8 print_time

virtual void print_time(const std::string& name,

UVM-SystemC Language Reference Manual – DRAFT Page 50

 const sc_core::sc_time& value,

 const char* scope_separator = ".");

The member function print_time shall print the time. The argument name defines the name of the field. The

argument value contains the value of the field. The argument scope_separator is used to find the leaf name since

many printers only print the leaf name of a field.

5.2.3.9 print_generic

virtual void print_generic(const std::string& name,

 const std::string& type_name,

 int size,

 const std::string& value,

 const char* scope_separator = ".");

The member function print_generic shall print a field using the arguments name, type_name, size, and value. The

argument scope_separator is used to find the leaf name since many printers only print the leaf name of a field.

5.2.4 Printer subtyping

5.2.4.1 emit

virtual std::string emit();

The member emit shall return a string representing the contents of an object in a format defined by an extension of

this object.

5.2.4.2 format_row

virtual std::string format_row(const uvm_printer_row_info& row);

The member format_row shall offer a hook for producing custom output of a single field (row).

5.2.4.3 format_header

virtual std::string format_header();

The member format_header shall offer a hook to override the base header with a custom header.

5.2.4.4 format_footer

virtual std::string format_footer();

The member format_footer shall offer a hook to override the base footer with a custom footer.

5.2.4.5 adjust_name

std::string adjust_name(const std::string& id,

Page 51 UVM-SystemC Language Reference Manual – DRAFT

 const char* scope_separator = ".") const;

The member function adjust_name shall print a field’s name, or id, which is the full instance name. The intent of

the separator is to mark where the leaf name starts if the printer is configured to print only the leaf name of the

identifier.

5.2.4.6 print_array_header

virtual void print_array_header(const std::string& name,

 int size,

 const std::string& arraytype = "array",

 const char* scope_separator = ".") const;

The member function print_array_header shall print the header of an array. This member function shall be called

before each individual element is printed. The member function print_array_footer shall be called to mark the

completion of array printing.

5.2.4.7 print_array_range

void print_array_range(int min, int max) const;

The member function print_array_range shall print a range using ellipses for values. This method is used when

honoring the array knobs for partial printing of large arrays, uvm_printer_knobs::begin_elements and

uvm_printer_knobs::end_elements. This member function should be called after

uvm_printer_knobs::begin_elements have been printed and before uvm_printer_knobs::end_elements have

been printed.

5.2.4.8 print_array_footer

void print_array_footer(int size = 0) const;

The member function print_array_footer shall print the footer of an array. This member function marks the end of

an array print. Generally, there is no output associated with the array footer, but this method lets the printer know

that the array printing is complete.

5.2.5 Data members

5.2.5.1 knobs

uvm_printer_knobs knobs;

The data member knobs shall provide access to the variety of knobs associated with a specific printer instance.

5.3 uvm_table_printer

The class uvm_table_printer shall provide a pre-defined printing output in a tabular format.

UVM-SystemC Language Reference Manual – DRAFT Page 52

5.3.1 Class definition

namespace uvm {

 class uvm_table_printer : public uvm_printer

 {

 public:

 uvm_table_printer();

 virtual std::string emit();

 }; // class uvm_table_printer

} // namespace uvm

5.3.2 Constructor

uvm_table_printer();

The constructor shall create a new instance of type uvm_table_printer.

5.3.3 emit

The member function emit shall format the collected information for printing into a table format.

5.4 uvm_tree_printer

The class uvm_tree_printer shall provide a pre-defined printing output in a tree format.

5.4.1 Class definition

namespace uvm {

 class uvm_tree_printer : public uvm_printer

 {

 public:

 uvm_tree_printer();

 virtual std::string emit();

 }; // class uvm_tree_printer

} // namespace uvm

5.4.2 Constructor

uvm_tree_printer();

Page 53 UVM-SystemC Language Reference Manual – DRAFT

The constructor shall create a new instance of type uvm_tree_printer.

5.4.3 emit

The member function emit shall format the collected information for printing into a hierarchical tree format.

5.5 uvm_line_printer

The class uvm_table_printer shall provide a pre-defined printing output in a line format.

5.5.1 Class definition

namespace uvm {

 class uvm_line_printer : public uvm_printer

 {

 public:

 uvm_line_printer();

 virtual std::string emit();

 }; // class uvm_line_printer

} // namespace uvm

5.5.2 Constructor

uvm_line_printer();

The constructor shall create a new instance of type uvm_line_printer.

5.5.3 emit

The member function emit shall format the collected information for printing into a line format, which contains no

line-feeds and indentation.

5.6 uvm_comparer

The class uvm_comparer shall provide a policy object for doing comparisons. The policies determine how

miscompares are treated and counted. Results of a comparison are stored in the comparer object. The member

functions uvm_object::compare and uvm_object::do_compare are passed a uvm_comparer policy object.

5.6.1 Class definition

namespace uvm {

 class uvm_comparer

 {

UVM-SystemC Language Reference Manual – DRAFT Page 54

 public:

 // Group: member functions

 virtual bool compare_field(const std::string& name,

 const uvm_bitstream_t& lhs,

 const uvm_bitstream_t& rhs,

 int size,

 uvm_radix_enum radix = UVM_NORADIX) const;

 virtual bool compare_field_int(const std::string& name,

 const uvm_integral_t& lhs,

 const uvm_integral_t& rhs,

 int size,

 uvm_radix_enum radix = UVM_NORADIX) const;

 virtual bool compare_field_real(const std::string& name,

 double lhs,

 double rhs) const;

 virtual bool compare_field_real(const std::string& name,

 float lhs,

 float rhs) const;

 virtual bool compare_object(const std::string& name,

 const uvm_object& lhs,

 const uvm_object& rhs) const;

 virtual bool compare_string(const std::string& name,

 const std::string& lhs,

 const std::string& rhs) const;

 void print_msg(const std::string& msg) const;

 // Group: Comparer settings

 void set_policy(uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY);

 uvm_recursion_policy_enum get_policy() const;

 void set_max_messages(unsigned int num = 1);

 unsigned int get_max_messages() const;

 void set_verbosity(unsigned int verbosity = UVM_LOW);

Page 55 UVM-SystemC Language Reference Manual – DRAFT

 unsigned int get_verbosity() const;

 void set_severity(uvm_severity sev = UVM_INFO);

 uvm_severity get_severity () const;

 void set_miscompare_string(const std::string& miscompares = "");

 std::string get_miscompare_string() const;

 void set_physical(bool physical = true);

 bool get_physical() const;

 void set_abstract(bool abstract = true);

 bool get_abstract() const;

 void compare_type(bool enable = true);

 unsigned int get_result() const;

 private:

 // Disabled

 uvm_comparer();

 }; // class uvm_comparer

} // namespace uvm

5.6.2 Constraints on usage

An application shall not explicitly create an instance of the class uvm_comparer.

5.6.3 Member functions

5.6.3.1 compare_field

virtual bool compare_field(const std::string& name,

 const uvm_bitstream_t& lhs,

 const uvm_bitstream_t& rhs,

 int size,

 uvm_radix_enum radix = UVM_NORADIX) const;

The member function compare_field shall compare two integral values. The argument name is used for purposes of

storing and printing a miscompare. The left-hand-side lhs and right-hand-side rhs objects are the two objects used

for comparison. The size variable indicates the number of bits to compare; size must be less than or equal to 4096.

The argument radix is used for reporting purposes, the default radix is hex.

5.6.3.2 compare_field_int

virtual bool compare_field_int(const std::string& name,

UVM-SystemC Language Reference Manual – DRAFT Page 56

 const uvm_integral_t& lhs,

 const uvm_integral_t& rhs,

 int size,

 uvm_radix_enum radix = UVM_NORADIX) const;

The member function compare_field_int shall compare two integral values. This member function is same as

compare_field except that the arguments are small integers, less than or equal to 64 bits. It is automatically called

by compare_field if the operand size is less than or equal to 64.

The argument name is used for purposes of storing and printing a miscompare. The left-hand-side lhs and right-

hand-side rhs objects are the two objects used for comparison. The size variable indicates the number of bits to

compare; size must be less than or equal to 64. The argument radix is used for reporting purposes, the default radix

is hex.

5.6.3.3 compare_field_real

virtual bool compare_field_real(const std::string& name,

 double lhs,

 double rhs) const;

virtual bool compare_field_real(const std::string& name,

 float lhs,

 float rhs) const;

The member function compare_field_real shall compare two real numbers, represented by type double or float. The

left-hand-side lhs and right-hand-side rhs arguments are used for comparison.

5.6.3.4 compare_object

virtual bool compare_object(const std::string& name,

 const uvm_object& lhs,

 const uvm_object& rhs) const;

The member function compare_object shall compare two class objects using the data member policy to determine

whether the comparison should be deep, shallow, or reference. The argument name is used for purposes of storing

and printing a miscompare. The lhs and rhs objects are the two objects used for comparison. The data member

check_type determines whether or not to verify the object types match (the return from lhs.get_type_name()

matches rhs.get_type_name()).

5.6.3.5 compare_string

virtual bool compare_string(const std::string& name,

 const std::string& lhs,

 const std::string& rhs) const;

Page 57 UVM-SystemC Language Reference Manual – DRAFT

The member function compare_string shall compare two two string variables. The argument name is used for

purposes of storing and printing a miscompare. The lhs and rhs objects are the two objects used for comparison.

5.6.3.6 print_msg

void print_msg(const std::string& msg) const;

The member function print_msg shall cause the error count to be incremented and the message passed as argument

to be appended to the miscompares string (a newline is used to separate messages). If the message count is less than

the data member show_max setting, then the message is printed to standard-out using the current verbosity (see

5.6.4.5) and severity (see 5.6.4.7) settings.

5.6.4 Comparer settings

5.6.4.1 set_policy

set_policy(uvm_recursion_policy_enum policy = UVM_DEFAULT_POLICY);

The member function set_policy shall set the comparison policy. The following arguments are valid: UVM_DEEP,

UVM_REFERENCE, or UVM_SHALLOW. The default policy shall be set to UVM_DEFAULT_POLICY.

5.6.4.2 get_policy

uvm_recursion_policy_enum get_policy() const;

The member function get_policy shall return the comparison policy.

5.6.4.3 set_max_messages

void set_max_messages(unsigned int num = 1);

The member function set_max_messages sets the maximum number of messages to send to the printer for

miscompares of an object. The default number of messages shall be set to one.

5.6.4.4 get_max_messages

unsigned int get_max_messages() const;

The member function get_max_messages shall return the maximum number of messages to send to the printer for

miscompares of an object.

5.6.4.5 set_verbosity

void set_verbosity(unsigned int verbosity = UVM_LOW);

The member function set_verbosity shall set the verbosity for printed messages. The verbosity setting is used by the

messaging mechanism to determine whether messages should be suppressed or shown. The default verbosity shall

be set to UVM_LOW.

UVM-SystemC Language Reference Manual – DRAFT Page 58

5.6.4.6 get_verbosity

unsigned int get_verbosity() const;

The member function get_verbosity shall return the verbosity for printed messages.

5.6.4.7 set_severity

void set_severity(uvm_severity sev = UVM_INFO);

The member function set_severity shall set the severity for printed messages. The severity setting is used by the

messaging mechanism for printing and filtering messages. The default severity shall be set to UVM_INFO.

5.6.4.8 get_severity

uvm_severity get_severity() const;

The member function get_severity shall return the severity for printed messages.

5.6.4.9 set_miscompare_string

void set_miscompare_string(const std::string& miscompares = "");

The member function set_miscompare_string shall set the miscompare string. This string is reset to an empty string

when a comparison is started. The string holds the last set of miscompares that occurred during a comparison. The

default miscompare string shall be empty.

5.6.4.10 get_miscompare_string

std::string get_miscompare_string() const;

The member function get_miscompare_string shall return the last set of miscompares that occurred during a

comparison.

5.6.4.11 set_field_attribute

void set_field_attribute(uvm_field_enum attr = UVM_PHYSICAL);

The member function set_field_attribute shall set the field attribute to UVM_PHYSICAL or UVM_ABSTRACT.

The physical and abstract settings allow an object to distinguish between these two different classes of fields.

NOTEAn application can use the callback uvm_object::do_compare to check the field attribute if it wants to use it as a filter.

5.6.4.12 get_field_attribute

uvm_field_enum set_field_attribute() const;

The member function get_field_attribute shall return the field attribute being UVM_PHYSICAL or

UVM_ABSTRACT.

Page 59 UVM-SystemC Language Reference Manual – DRAFT

5.6.4.13 compare_type

void compare_type(bool enable = true);

The member function compare_type shall determine whether the type, given by uvm_object::get_type_name, is

used to verify that the types of two objects are the same. If enabled, the member function compare_object is called.

By default, type checking shall be enabled.

NOTEIn some cases an application may disable type checking, when the two operands are related by inheritance but are of

different types.

5.6.4.14 get_result

unsigned int get_result() const;

The member function get_result shall return the number of miscompares for a given compare operation. An

application can use the result to determine the number of miscompares that were found.

5.7 Default policy objects

This section lists the default policy objects.

5.7.1.1 uvm_default_table_printer

extern uvm_table_printer* uvm_default_table_printer;

The global object uvm_default_table_printer shall define a handle to an object of type uvm_table_printer, which

can be used with uvm_object::do_print to get tabular style printing.

5.7.1.2 uvm_default_tree_printer

extern uvm_tree_printer* uvm_default_tree_printer;

The global object uvm_default_tree_printer shall define a handle to an object of type uvm_tree_printer, which

can be used with uvm_object::do_print to get a multi-line tree style printing.

5.7.1.3 uvm_default_line_printer

extern uvm_line_printer* uvm_default_line_printer;

The global object uvm_default_line_printer shall define a handle to an object of type uvm_line_printer, which

can be used with uvm_object::do_print to get a single-line style printing.

5.7.1.4 uvm_default_printer

extern uvm_printer* uvm_default_printer;

The global object uvm_default_printer shall define the default printer policy, which shall be set to

uvm_default_table_printer. An application can redefine the default printer, by setting it to any legal uvm_printer

derived type, including the global line, tree, and table printers in the previous sections.

UVM-SystemC Language Reference Manual – DRAFT Page 60

5.7.1.5 uvm_default_packer

extern uvm_printer* uvm_default_printer;

The global object uvm_default_packer shall define the default packer policy. It shall be used when calls to

uvm_object::pack and uvm_object::unpack do not specify a packer policy.

5.7.1.6 uvm_default_comparer

extern uvm_comparer* uvm_default_comparer;

The global object uvm_default_comparer shall define the default comparer policy. It shall be used when calls to

uvm_object::compare do not specify a comparer policy.

5.7.1.7 uvm_default_recorder

extern uvm_recorder* uvm_default_recorder;

The global object uvm_default_recorder shall define the default recorder policy. It shall be used when calls to

uvm_object::record do not specify a recorder policy.

Page 61 UVM-SystemC Language Reference Manual – DRAFT

6. Registry and factory classes

The registry and factory classes offer the interface to register and use UVM objects and components via the factory.

The following classes are defined:

 uvm_object_wrapper

 uvm_object_registry

 uvm_component_registry

 uvm_factory

The class uvm_object_wrapper forms the base class for the registry classes uvm_object_registry and

uvm_component_registry, which act as lightweight proxies for UVM objects and components, respectively.

UVM object and component types are registered with the factory via typedef or macro invocation. When the

application requests a new object or component from the factory, the factory will determine what type of object to

create based on its configuration, and will ask that type’s proxy to create an instance of the type, which is returned to

the application.

6.1 uvm_object_wrapper

The class uvm_object_wrapper shall provide an abstract interface for creating object and component proxies.

Instances of these lightweight proxies, representing every object or component derived from uvm_object or

uvm_component respectively in the test environment, are registered with the uvm_factory. When the factory is

called upon to create an object or component, it shall find and delegate the request to the appropriate proxy.

6.1.1 Class definition

namespace uvm {

 class uvm_object_wrapper

 {

 public:

 virtual uvm_object* create_object(const std::string& name = "");

 virtual uvm_component* create_component(const std::string& name,

 uvm_component* parent);

 virtual const std::string get_type_name() const = 0;

 };

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 62

6.1.2 Member functions

6.1.2.1 create_object

virtual uvm_object* create_object(const std::string& name = "");

The member function create_object shall create a new object with the optional name passed as argument. An object

proxy (e.g., uvm_object_registry<T>) implements this member function to create an object of a specific type, T

(see 6.2).

6.1.2.2 create_component

virtual uvm_object* create_object(const std::string& name = "");

The member function create_component shall create a new component, by passing to its constructor the given

name and parent. The component proxy (e.g. uvm_component_registry<T>) implements this member function to

create a component of a specific type, T (see 6.3).

6.1.2.3 get_type_name

virtual const std::string get_type_name() const = 0;

The implementation of the pure virtual member function get_type_name shall return the type name of the object

created by create_component or create_object. The factory uses this name when matching against the requested

type in name-based lookups.

6.2 uvm_object_registry

The class uvm_object_registry shall provide a lightweight proxy for a uvm_object of type T. The proxy enables

efficient registration with the uvm_factory. Without it, registration would require an instance of the object itself.

The macros UVM_OBJECT_UTILS or UVM_OBJECT_PARAM_UTILS shall create the appropriate class

uvm_object_registry necessary to register that particular object wth the factory.

6.2.1 Class definition

namespace uvm {

 template <typename T = uvm_object>

 class uvm_object_registry<T> : public uvm_object_wrapper

 {

 public:

 virtual uvm_object* create_object(const std::string& name = "");

 virtual const std::string get_type_name() const;

 static uvm_object_registry<T>* get();

 static T* create(const std::string& name = "",

Page 63 UVM-SystemC Language Reference Manual – DRAFT

 uvm_component* parent = NULL,

 const std::string& contxt = "");

 static void set_type_override(uvm_object_wrapper* override_type,

 bool replace = true);

 static void set_inst_override(uvm_object_wrapper* override_type,

 const std::string& inst_path,

 uvm_component* parent = NULL);

 }; // class uvm_object_registry

} // namespace uvm

6.2.2 Template parameter T

The template parameter T specifies the object type of the objects being registered. The object type must be a

derivative of class uvm_object.

6.2.3 Member functions

6.2.3.1 create_object

virtual uvm_object* create_object(const std::string& name = "");

The member function create_object shall create an object of type T and returns it as a handle to a uvm_object. This

is an overload of the member function in uvm_object_wrapper. It is called by the factory after determining the type

of object to create. An application shall not call this member function directly. Instead, an application shall call the

static member function create.

6.2.3.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object. This member function overloads the

member function in uvm_object_wrapper.

6.2.3.3 get

static uvm_object_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends on

there being a single proxy instance for each registered type.

6.2.3.4 create

static T* create(const std::string& name = "",

UVM-SystemC Language Reference Manual – DRAFT Page 64

 uvm_component* parent = NULL,

 const std::string& contxt = "");

The member function create shall return a new instance of the object type, T, represented by this proxy, subject to

any factory overrides based on the context provided by the parent’s full name. The new instance shall have the given

leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s context.

6.2.3.5 set_type_override

static void set_type_override(uvm_object_wrapper* override_type,

 bool replace = true);

The member function set_type_override shall configure the factory to create an object of the type represented by

override_type whenever a request is made to create an object of the type represented by this proxy, provided no

instance override applies. The original type, T, is typically a super class of the override type.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains

intact.

6.2.3.6 set_inst_override

static void set_inst_override(uvm_object_wrapper* override_type,

 const std::string& inst_path,

 uvm_component* parent = NULL);

The member function set_inst_override shall configure the factory to create an object of the type represented by

argument override_type whenever a request is made to create an object of the type represented by this proxy, with

matching instance paths. The original type, T, is typically a super class of the override type.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which enables

instance overrides to be set from outside component classes. If argument parent is specified, argument inst_path is

interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may contain

wildcards for matching against multiple contexts.

6.3 uvm_component_registry

The class uvm_component_registry shall provide a lightweight proxy for a uvm_component of type T. The proxy

enables efficient registration with the uvm_factory. Without it, registration would require an instance of the

component itself.

The macros UVM_COMPONENT_UTILS and UVM_COMPONENT_PARAM_UTILS shall create the

appropriate class uvm_component_registry necessary to register that particular component with the factory.

6.3.1 Class definition

namespace uvm {

 template <typename T = uvm_component>

Page 65 UVM-SystemC Language Reference Manual – DRAFT

 class uvm_component_registry : public uvm_object_wrapper

 {

 public:

 virtual uvm_component* create_component(const std::string& name,

 uvm_component* parent);

 virtual const std::string get_type_name() const;

 static uvm_component_registry<T>* get();

 static T* create(const std::string& name = "",

 uvm_component* parent = NULL,

 const std::string& contxt = "");

 static void set_type_override(uvm_object_wrapper* override_type,

 bool replace = true);

 static void set_inst_override(uvm_object_wrapper* override_type,

 const std::string& inst_path,

 uvm_component* parent = NULL);

 }; // class uvm_component_registry

} // namespace uvm

6.3.2 Template parameter T

The template parameter T specifies the object type of the components being registered. The object type must be a

derivative of class uvm_component.

6.3.3 Member functions

6.3.3.1 create_component

virtual uvm_component* create_component(const std::string& name,

 uvm_component* parent);

The member function create_component shall create an object of type T having the provided name and parent, and

returns it as a handle to a uvm_component. This is an overload of the member function in uvm_object_wrapper. It

is called by the factory after determining the type of component to create. An application shall not call this member

function directly. Instead, an application shall call the static member function create.

UVM-SystemC Language Reference Manual – DRAFT Page 66

6.3.3.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component. This member function overloads

the member function in uvm_object_wrapper.

6.3.3.3 get

static uvm_component_registry<T>* get();

The member function get shall return the singleton instance of this type. Type-based factory operation depends on

there being a single proxy instance for each registered type.

6.3.3.4 create

static T* create(const std::string& name = "",

 uvm_component* parent = NULL,

 const std::string& contxt = "");

The member function create shall return a new instance of the component type, T, represented by this proxy, subject

to any factory overrides based on the context provided by the parent’s full name. The new instance shall have the

given leaf name name, if provided as argument. The argument contxt, if supplied, supersedes the parent’s context.

6.3.3.5 set_type_override

static void set_type_override(uvm_object_wrapper* override_type,

 bool replace = true);

The member function set_type_override shall configure the factory to create a component of the type represented

by argument override_type whenever a request is made to create a component of the type represented by this proxy,

provided no instance override applies. The override type shall be derived from the original type, T.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains

intact.

6.3.3.6 set_inst_override

static void set_inst_override(uvm_object_wrapper* override_type,

 const std::string& inst_path,

 uvm_component* parent = NULL);

The member function set_inst_override shall configure the factory to create a component of the type represented by

argument override_type whenever a request is made to create a component of the type represented by this proxy,

with matching instance paths. The override type shall be derived from the original type, T.

If argument parent is not specified, argument inst_path is interpreted as an absolute instance path, which enables

instance overrides to be set from outside component classes. If argument parent is specified, argument inst_path is

interpreted as being relative to the parent’s hierarchical instance path. The argument inst_path may contain

wildcards for matching against multiple contexts.

Page 67 UVM-SystemC Language Reference Manual – DRAFT

6.4 uvm_factory

The class uvm_factory implements a factory pattern. A singleton factory instance is created for a given simulation

run. Object and component types are registered with the factory using proxies to the actual objects and components

being created. The classes uvm_object_registry<T> and uvm_component_registry<T> are used to proxy objects

of type uvm_object and uvm_component respectively. These registry classes both use the uvm_object_wrapper

as abstract base class.

6.4.1 Class definition

namespace uvm {

 class uvm_factory {

 public:

 uvm_factory();

 // Group: Registering types

 void do_register (uvm_object_wrapper* obj);

 // Group: Type & instance overrides

 void set_inst_override_by_type(uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type,

 const std::string& full_inst_path);

 void set_inst_override_by_name(const std::string& original_type_name,

 const std::string& override_type_name,

 const std::string& full_inst_path);

 void set_type_override_by_type(uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type,

 bool replace = true);

 void set_type_override_by_name(const std::string& original_type_name,

 const std::string& override_type_name,

 bool replace = true);

 // Group: Creation

 uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

UVM-SystemC Language Reference Manual – DRAFT Page 68

 uvm_object* create_object_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

 uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,

 const std::string& parent_inst_path = "",

 const std::string& name = "",

 uvm_component* parent = NULL);

 uvm_component* create_component_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

 const std::string& name = "",

 uvm_component* parent = NULL);

 // Group: Debug

 void debug_create_by_type(uvm_object_wrapper* requested_type,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

 void debug_create_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

 uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,

 const std::string& full_inst_path);

 uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,

 const std::string& full_inst_path);

 void print(int all_types = 1);

 }; // class uvm_factory

} // namespace uvm

Page 69 UVM-SystemC Language Reference Manual – DRAFT

6.4.2 Registering types

6.4.2.1 do_register (register†)

Void do_register(uvm_object_wrapper* obj);

The member function do_register shall be used to register an object or a component with the factory. Usually, an

application will invoke the macros UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS,

UVM_COMPONENT_UTILS, or UVM_COMPONENT_PARAM_UTILS to register a particular object or

component respectively with the factory.

NOTEThe UVM standard defines the member function register† for factory registration. As ‘register’ is a reserved keyword in

C++, this member function has been renamed to do_register in UVM-SystemC.

6.4.3 Type and instance overrides

6.4.3.1 set_inst_override_by_type

void set_inst_override_by_type(uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type,

 const std::string& full_inst_path);

The member function set_inst_override_by_type shall configure the factory to create an object of the override’s

type whenever a request is made to create an object of the original type using a context that matches full_inst_path.

The override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

The argument full_inst_path is matched against the concatenation of parent instance path and name

(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’

and ‘?’) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of ‘*’ is

effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.

Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general

override will not override the specific override.

6.4.3.2 set_inst_override_by_name

void set_inst_override_by_name(const std::string& original_type_name,

 const std::string& override_type_name,

 const std::string& full_inst_path);

The member function set_inst_override_by_name shall configure the factory to create an object of the override’s

type whenever a request is made to create an object of the original type using a context that matches full_inst_path.

The original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary

string. Future calls to any of the member functions create_object_by_type, create_object_by_name,

UVM-SystemC Language Reference Manual – DRAFT Page 70

create_component_by_type or create_component_by_name with the same string and matching instance path will

produce the type represented by override_type_name, which must be preregistered with the factory.

The argument full_inst_path is matched against the concatenation of parent instance path and name

(parent_inst_path.name) provided in future create requests. The argument full_inst_path may include wildcards (‘*’

and ‘?’) such that a single instance override can be applied in multiple contexts. An argument full_inst_path of ‘*’ is

effectively a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue shall be processed in order of the override call.

Thus, more specific overrides should be set in place first, followed by more general overrides. This way, the general

override will not override the specific override.

6.4.3.3 set_type_override_by_type

void set_type_override_by_type(uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type,

 bool replace = true);

The member function set_inst_override_by_type shall configure the factory to create an object of the override’s

type whenever a request is made to create an object of the original type, provided no instance override applies. The

override type shall be derived from the original type, T.

Both the original_type and override_type are handles to the types’ proxy objects. Preregistration is not required.

When replace is true, a previous override on original_type is replaced, otherwise a previous override, if any, remains

intact.

6.4.3.4 set_type_override_by_name

void set_type_override_by_name(const std::string& original_type_name,

 const std::string& override_type_name,

 bool replace = true);

The member function set_inst_override_by_name shall configure the factory to create an object of the override’s

type whenever a request is made to create an object of the original type, provided no instance override applies. The

original type is typically a super class of the override type.

The original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary

string. Future calls to any of the member functions create_object_by_type, create_object_by_name,

create_component_by_type or create_component_by_name with the same string and matching instance path will

produce the type represented by override_type_name, which must be preregistered with the factory.

When replace is true, a previous override on original_type_name is replaced, otherwise a previous override, if any,

remains intact.

6.4.4 Creation

6.4.4.1 create_object_by_type

uvm_object* create_object_by_type(uvm_object_wrapper* requested_type,

Page 71 UVM-SystemC Language Reference Manual – DRAFT

 const std::string& parent_inst_path = "",

 const std::string& name = "");

The member function create_object_by_type shall create and return an object of the requested type, which is

specified by argument requested_type. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is

provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for

an instance override. Newly created object shall have the given name, if provided.

6.4.4.2 create_object_by_name

uvm_object* create_object_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

The member function create_object_by_name shall create and return an object of the requested type, which is

specified by argument requested_type_name. The requested type must have been registered with the factory with

that name prior to the request. If the factory does not recognize the requested_type_name, an error is produced and

the member function shall return NULL. A requested object shall be derived from the base class uvm_object.

The argument parent_inst_path is an optional hierarchical anchor for the object being created. If this argument is

provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search for

an instance override. If no instance override is found, the factory then searches for a type override. Newly created

object shall have the given name, if provided.

NOTEThe convenience function create_object is available in the class uvm_component for the creation of an object (See

Section 7.1.1). Alternatively, an application can create an object by using the static member function create via the

uvm_object_registry, which is made available via the macro UVM_OBJECT_UTILS or UVM_OBJECT_PARAM_UTILS.

6.4.4.3 create_component_by_type

uvm_component* create_component_by_type(uvm_object_wrapper* requested_type,

 const std::string& parent_inst_path = "",

 const std::string& name = "",

 uvm_component* parent = NULL);

The member function create_component_by_type shall create and return a component of the requested type, which

is specified by argument requested_type. A requested component shall be derived from the base class

uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument

is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search

for an instance override. Newly created components shall have the given name and parent.

6.4.4.4 create_component_by_name

uvm_component* create_component_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

UVM-SystemC Language Reference Manual – DRAFT Page 72

 const std::string& name = "",

 uvm_component* parent = NULL);

The member function create_component_by_name shall create and return a component of the requested type,

which is specified by argument requested_type_name. The requested type must have been registered with the

factory with that name prior to the request. If the factory does not recognize the requested_type_name, an error is

produced and the member function shall return NULL. A requested component shall be derived from the base class

uvm_component.

The argument parent_inst_path is an optional hierarchical anchor for the component being created. If this argument

is provided, then the concatenation, parent_inst_path.name, forms the instance path (context) that is used to search

for an instance override. If no instance override is found, the factory then searches for a type override. Newly

created components shall have the given name and parent.

NOTEThe convenience function create_component is available in the class uvm_component for the creation of a component

(see section 7.1.1). Alternatively, an application can create an object by using the static member function create via the

uvm_component_registry which is made available via the macro UVM_COMPONENT_UTILS or

UVM_COMPONENT_PARAM_UTILS.

6.4.5 Debug

6.4.5.1 debug_create_by_type

void debug_create_by_type(uvm_object_wrapper* requested_type,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

The member function debug_create_by_type shall perform the same search algorithm as the member function

create_object_by_type, but it shall not create a new object. Instead, it provides detailed information about what

type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the

arguments are exactly as with the member function create_object_by_type.

6.4.5.2 debug_create_by_name

void debug_create_by_name(const std::string& requested_type_name,

 const std::string& parent_inst_path = "",

 const std::string& name = "");

The member function debug_create_by_name shall perform the same search algorithm as the member function

create_object_by_name, but it shall not create a new object. Instead, it provides detailed information about what

type of object it would return, listing each override that was applied to arrive at the result. Interpretation of the

arguments are exactly as with the member function create_object_by_name.

6.4.5.3 find_override_by_type

uvm_object_wrapper* find_override_by_type(uvm_object_wrapper* requested_type,

 const std::string& full_inst_path);

Page 73 UVM-SystemC Language Reference Manual – DRAFT

The member function find_override_by_type shall return the proxy to the object that would be created given the

arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the

object to be created.

6.4.5.4 find_override_by_name

uvm_object_wrapper* find_override_by_name(const std::string& requested_type_name,

 const std::string& full_inst_path);

The member function find_override_by_name shall return the proxy to the object that would be created given the

arguments. The argument full_inst_path is typically derived from the parent’s instance path and the leaf name of the

object to be created.

6.4.5.5 print

void print(int all_types = 1);

The member function print shall print the state of the uvm_factory, including registered types, instance overrides,

and type overrides.

When argument all_types is set to zero, only type and instance overrides are displayed. When all_types is set to 1

(default), all registered user-defined types are printed as well, provided they have names associated with them.

When all_types is set to 2, the UVM types (prefixed with uvm_) are included in the list of registered types.

UVM-SystemC Language Reference Manual – DRAFT Page 74

7. Component hierarchy classes

The UVM components form the foundation of the UVM. They are used to assemble the actual verification

environment in a hierarchical and modular fashion, offering a basic set of building blocks such as sequencers,

drivers, monitors, scoreboards, and other components. The UVM class library provides a set of predefined

component types, all derived directly or indirectly from class uvm_component. The following classes are defined:

 uvm_component

 uvm_agent

 uvm_driver

 uvm_monitor

 uvm_env

 uvm_scoreboard

 uvm_subscriber

 uvm_test

 uvm_sequencer (see section 8)

7.1 uvm_component

The class uvm_component is the root base class for all structural elements. It provides interfaces for:

 Hierarchy

 Phasing: Pre-run phases, run phase, and post-run phases

 Factory: convenience interface to uvm_factory

 Process control: to suspend and resume processes

 Objection: to handle raised and dropped objections

 Reporting: hierarchical reporting of messages

 Recording: transaction recording

7.1.1 Class definition

namespace uvm {

 class uvm_component : public sc_core::sc_module,

 public uvm_report_object

 {

 public:

 // Group: Construction

 explicit uvm_component(uvm_component_name name);

Page 75 UVM-SystemC Language Reference Manual – DRAFT

 // Group: Hierarchy Interface

 virtual uvm_component* get_parent() const;

 virtual const std::string get_full_name() const;

 void get_children(std::vector<uvm_component*>& children) const;

 uvm_component* get_child(const std::string& name) const;

 int get_next_child(std::string& name) const;

 int get_first_child(std::string& name) const;

 int get_num_children() const;

 bool has_child(const std::string& name) const;

 uvm_component* lookup(const std::string& name) const;

 unsigned int get_depth() const;

 // Group: Phasing Interface

 virtual void build_phase(uvm_phase& phase);

 virtual void connect_phase(uvm_phase& phase);

 virtual void end_of_elaboration_phase(uvm_phase& phase);

 virtual void start_of_simulation_phase(uvm_phase& phase);

 virtual void run_phase(uvm_phase& phase);

 virtual void pre_reset_phase(uvm_phase& phase);

 virtual void reset_phase(uvm_phase& phase);

 virtual void post_reset_phase(uvm_phase& phase);

 virtual void pre_configure_phase(uvm_phase& phase);

 virtual void configure_phase(uvm_phase& phase);

 virtual void post_configure_phase(uvm_phase& phase);

 virtual void pre_main_phase(uvm_phase& phase);

 virtual void main_phase(uvm_phase& phase);

 virtual void post_main_phase(uvm_phase& phase);

 virtual void pre_shutdown_phase(uvm_phase& phase);

 virtual void shutdown_phase(uvm_phase& phase);

 virtual void post_shutdown_phase(uvm_phase& phase);

 virtual void extract_phase(uvm_phase& phase);

 virtual void check_phase(uvm_phase& phase);

 virtual void report_phase(uvm_phase& phase);

 virtual void final_phase(uvm_phase& phase);

 virtual void phase_started(uvm_phase& phase);

 virtual void phase_ready_to_end(uvm_phase& phase);

 virtual void phase_ended(uvm_phase& phase);

UVM-SystemC Language Reference Manual – DRAFT Page 76

 void set_domain(uvm_domain* domain, int hier = 1);

 uvm_domain* get_domain() const;

 void define_domain(uvm_domain* domain);

 void set_phase_imp(uvm_phase* phase, uvm_phase* imp, int hier = 1);

 // Group: Process control interface

 virtual bool suspend();

 virtual bool resume();

 // Group: Configuration Interface

 void print_config(bool recurse = false, bool audit = false) const;

 void print_config_with_audit(bool recurse = false) const;

 void print_config_matches(bool enable = true);

 // Group: Objection Interface

 virtual void raised(uvm_objection* objection,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 virtual void dropped(uvm_objection* objection,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 virtual void all_dropped(uvm_objection* objection,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 // Group: Factory Interface

 uvm_component* create_component(const std::string& requested_type_name,

 const std::string& name);

 uvm_object* create_object(const std::string& requested_type_name,

 const std::string& name);

 static void set_type_override_by_type(uvm_object_wrapper* original_type,

Page 77 UVM-SystemC Language Reference Manual – DRAFT

 uvm_object_wrapper* override_type,

 bool replace = true);

 void set_inst_override_by_type(const std::string& relative_inst_path,

 uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type);

 static void set_type_override(const std::string& original_type_name,

 const std::string& override_type_name,

 bool replace = true);

 void set_inst_override(const std::string& relative_inst_path,

 const std::string& original_type_name,

 const std::string& override_type_name);

 void print_override_info(const std::string& requested_type_name = "",

 const std::string& name = "");

 // Group: Hierarchical reporting interface

 void set_report_id_verbosity_hier(const std::string& id,

 int verbosity);

 void set_report_severity_id_verbosity_hier(uvm_severity severity,

 const std::string& id,

 int verbosity);

 void set_report_severity_action_hier(uvm_severity severity,

 uvm_action action);

 void set_report_id_action_hier(const std::string& id,

 uvm_action action);

 void set_report_severity_id_action_hier(uvm_severity severity,

 const std::string& id,

 uvm_action action);

 void set_report_default_file_hier(UVM_FILE file);

 void set_report_severity_file_hier(uvm_severity severity,

UVM-SystemC Language Reference Manual – DRAFT Page 78

 UVM_FILE file);

 void set_report_id_file_hier(const std::string& id,

 UVM_FILE file);

 void set_report_severity_id_file_hier(uvm_severity severity,

 const std::string& id,

 UVM_FILE file);

 void set_report_verbosity_level_hier(int verbosity);

 virtual void pre_abort();

 }; // class uvm_component

} // namespace uvm

7.1.2 Construction interface

When creating a new UVM component, an application must always provide a local leaf name. The parent is traced

from the current uvm_component at top of the hierarchy stack. The uvm_component hierarchy stack is built

during module construction, in the pre-run phases build_phase and connect_phase. If the parent component is not

derived from uvm_component, the leaf object becomes part of the object uvm_root. The full hierarchical name

must be unique; if it is not unique, a warning message is generated, and a number is appended at the end of the

hierarchical name to make it unique.

Compatible with SystemC, it is illegal to create a component after the before_end_of_elaboration phase or UVM

pre-run phases build_phase and connect_phase. The constructor for uvm_component spawns off the member

function run_phase of that component.

7.1.2.1 Constructor

explicit uvm_component(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.1.3 Hierarchy interface

The following member functions provide user access to information about the component hierarchy, for example,

topology.

7.1.3.1 get_parent

virtual uvm_component* get_parent() const;

The member function get_parent shall return a pointer to the component’s parent, or NULL if it has no parent.

Page 79 UVM-SystemC Language Reference Manual – DRAFT

7.1.3.2 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full hierarchical name of the component. It shall concatenate

the hierarchical name of the parent, if any, with the leaf name of the component, as returned by member function

uvm_object::get_name (see 4.2.3.2).

7.1.3.3 get_children

void get_children(std::vector<uvm_component*>& children) const;

The member function get_children shall return a vector of type std::vector containing a pointer to every instance of

the component’s children of class uvm_component.

7.1.3.4 get_child

uvm_component* get_child(const std::string& name) const;

The member function get_child shall return a pointer to the component’s child which matches the argument string

name.

7.1.3.5 get_first_child

int get_first_child(std::string& name) const;

The member function get_first_child shall pass the name of the first child of a component to the argument name.

The member function returns true of the first child has been found; otherwise it shall return false.

7.1.3.6 get_next_child

int get_next_child(std::string& name) const;

The member function get_next_child shall pass the name of the next child of a component, followed after a call to

member function get_first_child, to the argument name. The member function returns true of the next child has

been found; otherwise it shall return false.

7.1.3.7 get_num_children

int get_num_children() const;

The member function get_num_children shall return the number of the component’s children.

7.1.3.8 has_child

bool has_child(const std::string& name) const;

The member function has_child shall return true if this component has a child with the given name; otherwise it

shall return false;

UVM-SystemC Language Reference Manual – DRAFT Page 80

7.1.3.9 lookup

uvm_component* lookup(const std::string& name) const;

The member function lookup shall return a pointer to a component with the passed hierarchical name name relative

to the component. If the argument name is preceded with a ‘.’ (dot), then the search shall begin relative to the top

level (absolute lookup). The member function shall return NULL if no component has been found. The argument

name shall not contain wildcards.

7.1.3.10 get_depth

unsigned int get_depth() const;

The member function get_depth shall return the component’s depth from the root level. uvm_top has a depth of 0.

The test and any other top level components have a depth of 1, and so on.

7.1.4 Phasing interface

UVM components execute their behavior in strictly ordered, pre-defined phases. Each phase is defined by its own

member function, which derived components can override to incorporate component-specific behavior. During

simulation, the phases are executed one by one, where one phase must complete before the next phase begins.

The phases can be grouped in three main categories:

 Pre-run phases

 Run-time phases

 Post-run phases

7.1.4.1 Pre-run phases

The pre-run phases are responsible for the construction, connection and elaboration of the structural composition. In

the pre-run phases, there is neither notion nor progress of time. It consists of the following phases:

 build_phase: The component constructs its children in this phase. It may use the static member function

uvm_config_db::get to obtain any configuration for itself, the member function uvm_config_db::set to

define any configuration for its own children, and the factory interface for actually creating the children and

other objects it might need. An application shall declare child objects derived from uvm_component as

pointers, instead of member fields of a component, such that they can be created via the factory in this

phase.

 connect_phase: After creating the children in the build_phase, the component makes connections (binding

of (TLM) ports and exports) from child-to-child or from child-to-self (that is, to promote a child or export

up the hierarchy for external access).

 end_of_elaboration_phase: At this point, the entire testbench environment has been built and connected.

No new components and connections shall be created from this point forward. Components do final checks

for proper connectivity.

 start_of_simulation_phase: The simulation is about to begin, and this phase is used to perform any pre-

run activity such as displaying banners, printing final testbench topology and configuration information.

Page 81 UVM-SystemC Language Reference Manual – DRAFT

As UVM components are derived from class sc_module, the inherited callbacks before_end_of_elaboration,

end_of_elaboration, and start_of_simulation are available. It is recommended not to use these member functions

for the construction of testbenches, but to use the UVM pre-run phases. Main reason is to support maximum

reusability and flexibility for building, configuration and connecting various verification components using the same

construction mechanism.

7.1.4.2 Run-time phases

The run-time phases are used to perform the actual verification. These phases are exclusively designed only for

objects derived from class uvm_component. Run-time phases consume time.

A component's primary function is implemented in the member function run_phase. The component should not

declare ‘run_phase’ as a thread process. The UVM-SystemC library spawns run_phase as a thread process. Other

processes may be spawned from the run phase, if desired. When a component returns from executing its member

function run_phase, it does not signify completion of its run phase. Any processes that it may have spawned still

continue to run.

The run phase executes along with the other processes in the SystemC language: no special status is provided to the

run_phase processes; for example, there is no guarantee that the run_phase processes is the first on the runable

queue at time 0s, and hence there is no guarantee that the run_phase processes execute ahead of the other SystemC

processes.

Concurrently to the execution of the run_phase, UVM defines a pre-defined schedule which consists of four groups

of phases which are executed sequentially.

 Reset phases: Phases to apply reset signals for the DUT. Consists of three phases called pre_reset_phase,

reset_phase, and post_reset_phase.

 Configure phases: Phases which can be used for the configuration of the DUT. Consists of three phases

called pre_configure_phase, configure_phase, and post_configure_phase.

 Main phases: Phases which are used to apply the primary test stimulus to DUT. Consists of three phases

called pre_main_phase, main_phase, and post_main_phase.

 Shutdown phase: Phases to wait for all data to be drained out of the DUT and to disable DUT. Consists of

three phases called pre_shutdown_phase, shutdown_phase, and post_shutdown_phase.

7.1.4.3 Post-run phases

The post-run phases are:

 extract_phase: This phase occurs after the run phase is over. This phase is specific to objects derived from

class uvm_component and does not apply to objects derived from class sc_module. It is used to extract

simulation results from coverage collectors and scoreboards, collect status/error counts, statistics, and other

information from components in bottom-up order. Being a separate phase, the extract phase ensures all

relevant data from potentially independent sources (that is, other components) are collected before being

checked in the next phase.

 check_phase: This phase is specific to objects derived from class uvm_component and does not apply to

objects derived from class sc_module. Having extracted vital simulation results in the previous phase, the

check phase is used to validate such data and determine the overall simulation outcome. It executes bottom-

up.

UVM-SystemC Language Reference Manual – DRAFT Page 82

 report_phase: Finally, the report phase is used to output results to files and/or the screen. This phase is

also be specific to objects derived from class uvm_component and does not apply to objects derived from

class sc_module.

 final_phase: This phase is called as soon as all tests have been executed and completed. This phase is used

to close created or used files before the simulation exits.

7.1.4.4 build_phase

virtual void build_phase(uvm_phase& phase);

The member function build_phase shall provide a context to implement functionality as part of the build phase. The

application shall not call this member function directly.

7.1.4.5 connect_phase

virtual void connect_phase(uvm_phase& phase);

The member function connect_phase shall provide a context to implement functionality as part of the connect

phase. The application shall not call this member function directly.

7.1.4.6 end_of_elaboration_phase

virtual void end_of_elaboration_phase(uvm_phase& phase);

The member function end_of_elaboration_phase shall provide a context to implement functionality as part of the

end of elaboration phase. The application shall not call this member function directly.

7.1.4.7 start_of_simulation_phase

virtual void start_of_simulation_phase(uvm_phase& phase);

The member function start_of_simulation_phase shall provide a context to implement functionality as part of the

start of simulation phase. The application shall not call this member function directly.

7.1.4.8 run_phase

virtual void run_phase(uvm_phase& phase);

The member function run_phase shall provide a context to implement functionality as part of the run phase. An

objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all

components have dropped their respective objection using phase.drop_objection, or if no components raise an

objection, the phase shall be ended. Any processes spawned by this member function continue to run after the

member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.9 pre_reset_phase

virtual void pre_reset_phase(uvm_phase& phase);

Page 83 UVM-SystemC Language Reference Manual – DRAFT

The member function pre_reset_phase shall provide a context to implement functionality as part of the pre-reset

phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.

Once all components have dropped their respective objection using phase.drop_objection, or if no components

raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after

the member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.10 reset_phase

virtual void reset_phase(uvm_phase& phase);

The member function reset_phase shall provide a context to implement functionality as part of the reset phase. An

objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all

components have dropped their respective objection using phase.drop_objection, or if no components raise an

objection, the phase shall be ended. Any processes spawned by this member function continue to run after the

member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.11 post_reset_phase

virtual void post_reset_phase(uvm_phase& phase);

The member function post_reset_phase shall provide a context to implement functionality as part of the post-reset

phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.

Once all components have dropped their respective objection using phase.drop_objection, or if no components

raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after

the member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.12 pre_configuration_phase

virtual void pre_configuration_phase(uvm_phase& phase);

The member function pre_configuration_phase shall provide a context to implement functionality as part of the

pre-configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause

the phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if

no components raise an objection, the phase shall be ended. Any processes spawned by this member function

continue to run after the member function returns, but they shall be killed once the phase ends. The application shall

not call this member function directly.

7.1.4.13 configuration_phase

virtual void configuration_phase(uvm_phase& phase);

The member function configuration_phase shall provide a context to implement functionality as part of the

configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause the

phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no

components raise an objection, the phase shall be ended. Any processes spawned by this member function continue

UVM-SystemC Language Reference Manual – DRAFT Page 84

to run after the member function returns, but they shall be killed once the phase ends. The application shall not call

this member function directly.

7.1.4.14 post_configuration_phase

virtual void post_configuration_phase(uvm_phase& phase);

The member function post_configuration_phase shall provide a context to implement functionality as part of the

post-configuration phase. An objection shall be raised, using the member function phase.raise_objection, to cause

the phase to persist. Once all components have dropped their respective objection using phase.drop_objection, or if

no components raise an objection, the phase shall be ended. Any processes spawned by this member function

continue to run after the member function returns, but they shall be killed once the phase ends. The application shall

not call this member function directly.

7.1.4.15 pre_main_phase

virtual void pre_main_phase(uvm_phase& phase);

The member function pre_main_phase shall provide a context to implement functionality as part of the pre-main

phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.

Once all components have dropped their respective objection using phase.drop_objection, or if no components

raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after

the member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.16 main_phase

virtual void main_phase(uvm_phase& phase);

The member function main_phase shall provide a context to implement functionality as part of the main phase. An

objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist. Once all

components have dropped their respective objection using phase.drop_objection, or if no components raise an

objection, the phase shall be ended. Any processes spawned by this member function continue to run after the

member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.17 post_main_phase

virtual void post_main_phase(uvm_phase& phase);

The member function post_main_phase shall provide a context to implement functionality as part of the post-main

phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.

Once all components have dropped their respective objection using phase.drop_objection, or if no components

raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after

the member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

Page 85 UVM-SystemC Language Reference Manual – DRAFT

7.1.4.18 pre_shutdown_phase

virtual void pre_shutdown_phase(uvm_phase& phase);

The member function pre_shutdown_phase shall provide a context to implement functionality as part of the pre-

shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase

to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no

components raise an objection, the phase shall be ended. Any processes spawned by this member function continue

to run after the member function returns, but they shall be killed once the phase ends. The application shall not call

this member function directly.

7.1.4.19 shutdown_phase

virtual void shutdown_phase(uvm_phase& phase);

The member function shutdown_phase shall provide a context to implement functionality as part of the shutdown

phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase to persist.

Once all components have dropped their respective objection using phase.drop_objection, or if no components

raise an objection, the phase shall be ended. Any processes spawned by this member function continue to run after

the member function returns, but they shall be killed once the phase ends. The application shall not call this member

function directly.

7.1.4.20 post_shutdown_phase

virtual void post_shutdown_phase(uvm_phase& phase);

The member function post_shutdown_phase shall provide a context to implement functionality as part of the post-

shutdown phase. An objection shall be raised, using the member function phase.raise_objection, to cause the phase

to persist. Once all components have dropped their respective objection using phase.drop_objection, or if no

components raise an objection, the phase shall be ended. Any processes spawned by this member function continue

to run after the member function returns, but they shall be killed once the phase ends. The application shall not call

this member function directly.

7.1.4.21 extract_phase

virtual void extract_phase(uvm_phase& phase);

The member function extract_phase shall provide a context to implement functionality as part of the extract phase.

The application shall not call this member function directly.

7.1.4.22 check_phase

virtual void check_phase(uvm_phase& phase);

The member function check_phase shall provide a context to implement functionality as part of the check phase.

The application shall not call this member function directly.

7.1.4.23 report_phase

virtual void report_phase(uvm_phase& phase);

UVM-SystemC Language Reference Manual – DRAFT Page 86

The member function report_phase shall provide a context to implement functionality as part of the report phase.

The application shall not call this member function directly.

7.1.4.24 final_phase

virtual void final_phase(uvm_phase& phase);

The member function final_phase shall provide a context to implement functionality as part of the final phase. The

application shall not call this member function directly.

7.1.4.25 phase_started

virtual void phase_started(uvm_phase& phase);

The member function phase_started shall provide a context to implement functionality as part of the start of each

phase. The argument phase specifies the phase being started. Any threads spawned in this callback are not affected

when the phase ends.

7.1.4.26 phase_ready_to_end

virtual void phase_ready_to_end(uvm_phase& phase);

The member function phase_ready_to_end shall provide a context to implement functionality as part of the ending

of each phase. The argument phase specifies the phase being ended. The member function shall be invoked when all

objections to ending the given phase have been dropped, thus indicating that phase is ready to end. All this

component’s threads spawned for the given phase will be killed upon return from this member function.

Components needing to consume delta cycles or advance time to perform a clean exit from the phase may raise the

phase’s objection.

7.1.4.27 phase_ended

virtual void phase_ended(uvm_phase& phase);

The member function phase_ended shall provide a context to implement functionality at the end of each phase. The

argument phase specifies the phase that has ended. Any threads spawned in this callback are not affected when the

phase ends.

7.1.4.28 set_domain

void set_domain(uvm_domain* domain, int hier = 1);

The member function set_domain shall set the phase domain to this component and, if hier is set, recursively to all

its children.

7.1.4.29 get_domain

uvm_domain* get_domain() const;

The member function get_domain shall return a pointer to the phase domain set on this component.

Page 87 UVM-SystemC Language Reference Manual – DRAFT

7.1.4.30 define_domain

void define_domain(uvm_domain* domain);

The member function define_domain shall build a custom phase schedules into the provided domain passed as

pointer.

7.1.4.31 set_phase_imp

void set_phase_imp(uvm_phase* phase, uvm_phase* imp, int hier = 1);

The member function set_phase_imp shall provide a context for an application-specific phase implementation,

which shall be created as a singleton object extending the default one and implementing required behavior for the

member functions execute and traverse.

The optional argument hier specifies whether to apply the custom functor to the whole tree or just this component.

7.1.5 Process control interface

The class uvm_component has the following member functions to support process control constructs on the run

process handle:

 suspend

 resume

The default implementation of these member functions is to invoke the corresponding process control construct on

the component’s run process handle, if the run process is active (that is, not already terminated), for those simulators

that support process control constructs. Each of these member functions return true if the simulator supports process

control constructs. For those simulators that do not support process control constructs, these member functions do

nothing and return false.

NOTEProcess control extensions are only supported when using the Accellera Systems Initiative SystemC 2.3.0 release of the

proof-of-concept library.

7.1.5.1 suspend

virtual bool suspend();

The member function suspend shall suspend operation of this component. It shall return true if suspending

succeeds; otherwise it shall return false.

NOTEThis member function shall be implemented by the application to suspend the component according to the protocol and

functionality it implements. A suspended component can be subsequently resumed by calling the member function resume.

7.1.5.2 resume

virtual bool resume();

The member function resume shall resume operation of this component. It shall return true if resuming succeeds;

otherwise it shall return false.

NOTEThis member function shall be implemented by the application to resume a component that was previously suspended

using member function suspend. Some components may start in the suspended state and may need to be explicitly resumed.

UVM-SystemC Language Reference Manual – DRAFT Page 88

7.1.6 Configuration interface

The configuration interface accommodates additional printing and debug facilities for user-defined configurations

using the configuration database uvm_config_db.

7.1.6.1 print_config

void print_config(bool recurse = false, bool audit = false) const;

The member function print_config shall print all configuration information for this component, as set by previous

calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the order of their

precedence. If argument recurse is set, then configuration information for all children and below are printed as well.

If argument audit is set, then the audit trail for each resource is printed along with the resource name and value

7.1.6.2 print_config_with_audit

void print_config_with_audit(bool recurse = false) const;

The member function print_config_with_audit shall print all configuration information for this component, as set

by previous calls to uvm_config_db<T>::set and exports to the resources pool. The settings are printing in the order

of their precedence, and without the audit trail. If argument recurse is set, then configuration information for all

children and below are printed as well.

7.1.6.3 print_config_matches

void print_config_matches(bool enable = true);

The member function print_config_matches shall print all information about the matching configuration settings as

they are being applied for each call of uvm_config_db<T>::get. By default, this information is not printed.

7.1.7 Objection interface

These member functions provide object level access into the uvm_objection mechanism.

7.1.7.1 raised

virtual void raised(uvm_objection* objection,

 uvm_object* source_obj,

 const std::string& description,

 int count);

The member function raised shall be called when this or a descendant of this component instance raises the

specified objection. The argument source_obj is the object that originally raised the objection. The argument

description is optionally provided by the source_obj to give a reason for raising the objection. The argument count

indicates the number of objections raised by the source_obj.

7.1.7.2 dropped

virtual void dropped(uvm_objection* objection,

Page 89 UVM-SystemC Language Reference Manual – DRAFT

 uvm_object* source_obj,

 const std::string& description,

 int count);

The member function dropped shall be called when this or a descendant of this component instance drops the

specified objection. The argument source_obj is the object that originally dropped the objection. The argument

description is optionally provided by the source_obj to give a reason for dropping the objection. The argument count

indicates the number of objections dropped by the source_obj.

7.1.7.3 all_dropped

virtual void all_dropped(uvm_objection* objection,

 uvm_object* source_obj,

 const std::string& description,

 int count);

The member function all_dropped shall be called when all objections have been dropped by this component and all

its descendants. The argument source_obj is the object that dropped the last objection. The argument description is

optionally provided by the source_obj to give a reason for raising the objection. The argument count indicates the

number of objections dropped by the source_obj.

7.1.8 Factory interface

The factory interface provides components with convenient access to the UVM's central uvm_factory object. The

member functions defined in this section shall call the corresponding member functions in uvm_factory, passing

whatever arguments it can to reduce the number of arguments required of the user.

7.1.8.1 create_component

uvm_component* create_component(const std::string& requested_type_name,

 const std::string& name);

The member function create_component shall provide a convenience layer to the member function

uvm_factory::create_component_by_name, which calls upon the factory to create a new child component whose

type corresponds to the preregistered type name, requested_type_name, and instance name, name (see 6.4.4.4).

7.1.8.2 create_object

uvm_object* create_object(const std::string& requested_type_name,

 const std::string& name);

The member function create_object shall provide a convenience layer to the member function

uvm_factory::create_object_by_name, which calls upon the factory to create a new object whose type corresponds

to the preregistered type name, requested_type_name, and instance name, name (see 6.4.4.2).

UVM-SystemC Language Reference Manual – DRAFT Page 90

7.1.8.3 set_type_override_by_type

static void set_type_override_by_type(uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type,

 bool replace = true);

The member function set_type_override_by_type shall provide a convenience layer to the member function

uvm_factory::set_type_override_by_type, which registers a factory override for components and objects created

at this level of hierarchy or below (see 6.4.3.3).

The argument original_type represents the type that is being overridden. In subsequent calls to

uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the argument

requested_type matches the original_type and the instance paths match, the factory will produce the override_type.

7.1.8.4 set_inst_override_by_type

void set_inst_override_by_type(const std::string& relative_inst_path,

 uvm_object_wrapper* original_type,

 uvm_object_wrapper* override_type);

The member function set_inst_override_by_type shall provide a convenience layer to the member function

uvm_factory::set_inst_override_by_type, which registers a factory override for components and objects created at

this level of hierarchy or below (see 6.4.3.1).

The argument relative_inst_path is relative to this component and may include wildcards. The argument

original_type represents the type that is being overridden. In subsequent calls to

uvm_factory::create_object_by_type or uvm_factory::create_component_by_type, if the requested_type

matches the original_type and the instance paths match, the factory will produce the override_type.

7.1.8.5 set_type_override

static void set_type_override(const std::string& original_type_name,

 const std::string& override_type_name,

 bool replace = true);

The member function set_type_override shall provide a convenience layer to the member function

uvm_factory::set_type_override_by_name, which configures the factory to create an object of type

override_type_name whenever the factory is asked to produce a type represented by original_type_name (see

6.4.3.4).

The argument original_type_name typically refers to a preregistered type in the factory. It may, however, be any

arbitrary string. Subsequent calls to create_component or create_object with the same string and matching

instance path will produce the type represented by override_type_name. The argument override_type_name must

refer to a preregistered type in the factory.

7.1.8.6 set_inst_override

void set_inst_override(const std::string& relative_inst_path,

Page 91 UVM-SystemC Language Reference Manual – DRAFT

 const std::string& original_type_name,

 const std::string& override_type_name);

The member function set_inst_override shall provide a convenience layer to the member function

uvm_factory::set_inst_override_by_name, which registers a factory override for components created at this level

of hierarchy or below (see 6.4.3.2).

The argument relative_inst_path is relative to this component and may include wildcards. The argument

original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary string.

Subsequent calls to create_component or create_object with the same string and matching instance path will

produce the type represented by override_type_name. The override_type_name must refer to a preregistered type in

the factory.

7.1.8.7 print_override_info

void print_override_info(const std::string& requested_type_name = "",

 const std::string& name = "");

The member function print_override_info shall provide the same lookup process as create_object and

create_component, but instead of creating an object, it prints information about what type of object would be

created given the provided arguments.

7.1.9 Hierarchical reporting interface

This interface provides versions of the member function set_report_* in the base class uvm_report_object that are

applied recursively to this component and all its children. When a report is issued and its associated action

UVM_LOG is set, the report will be sent to its associated file descriptor.

7.1.9.1 set_report_id_verbosity_hier

void set_report_id_verbosity_hier(const std::string& id,

 int verbosity);

The member function set_report_id_verbosity_hier shall recursively associate the specified verbosity with reports

of the given id. A verbosity associated with a particular severity-id pair, using member function

set_report_severity_id_verbosity_hier, shall take precedence over a verbosity associated by this member function.

7.1.9.2 set_report_severity_id_verbosity_hier

void set_report_severity_id_verbosity_hier(uvm_severity severity,

 const std::string& id,

 int verbosity);

The member function set_report_severity_id_verbosity_hier shall recursively associate the specified verbosity

with reports of the given severity with id pair. An verbosity associated with a particular severity-id pair takes

precedence over an verbosity associated with id, which takes precedence over a verbosity associated with a severity.

UVM-SystemC Language Reference Manual – DRAFT Page 92

7.1.9.3 set_report_severity_action_hier

void set_report_severity_action_hier(uvm_severity severity,

 uvm_action action);

The member function set_report_severity_action_hier shall recursively associate the specified action with reports

of the given severity. An action associated with a particular severity-id pair shall take precedence over an action

associated with id, which shall take precedence over an action associated with a severity as defined in this member

function.

7.1.9.4 set_report_id_action_hier

void set_report_id_action_hier(const std::string& id,

 uvm_action action);

The member function set_report_id_action_hier shall recursively associate the specified action with reports of the

given id. An action associated with a particular severity-id pair shall take precedence over an action associated with

id as defined in this member function.

7.1.9.5 set_report_severity_id_action_hier

void set_report_severity_id_action_hier(uvm_severity severity,

 const std::string& id,

 uvm_action action);

The member function set_report_severity_id_action_hier shall recursively associate the specified action with

reports of the given severity with id pair. An action associated with a particular severity-id pair shall take precedence

over an action associated with id, which shall take precedence over an action associated with a severity.

7.1.9.6 set_report_default_file_hier

void set_report_default_file_hier(UVM_FILE file);

The member function set_report_default_file_hier shall recursively associate the report to the default file

descriptor. A file associated with a particular severity-id pair shall take precedence over a file associated with id,

which shall take precedence over a file associated with a severity, which shall take precedence over the default file

descriptor as defined in this member function.

7.1.9.7 set_report_severity_file_hier

void set_report_severity_file_hier(uvm_severity severity,

 UVM_FILE file);

The member function set_report_severity_file_hier shall recursively associate the specified file descriptor with

reports of the given severity. A file associated with a particular severity-id pair shall take precedence over a file

associated with id, which shall take precedence over a file associated with a severity as defined in this member

function.

Page 93 UVM-SystemC Language Reference Manual – DRAFT

7.1.9.8 set_report_id_file_hier

void set_report_id_file_hier(const std::string& id,

 UVM_FILE file);

The member function set_report_id_file_hier shall recursively associate the specified file descriptor with reports of

the given id. A file associated with a particular severity-id pair shall take precedence over a file associated with id as

defined in this member function.

7.1.9.9 set_report_severity_id_file_hier

void set_report_severity_id_file_hier(uvm_severity severity,

 const std::string& id,

 UVM_FILE file);

The member function set_report_severity_id_file_hier shall recursively associate the specified file descriptor with

reports of the given severity and id pair. A file associated with a particular severity-id pair shall take precedence

over a file associated with id, which shall take precedence over a file associated with a severity, which shall take

precedence over the default file descriptor.

7.1.9.10 set_report_verbosity_level_hier

void set_report_verbosity_level_hier(int verbosity);

The member function set_report_verbosity_level_hier shall recursively set the maximum verbosity level for

reports for this component and all those below it. Any report from this component sub-tree whose verbosity exceeds

this maximum will be ignored.

7.1.9.11 pre_abort

virtual void pre_abort();

The member function pre_abort shall be executed when the message system is executing a UVM_EXIT action.

The exit action causes an immediate termination of the simulation, but the pre_abort callback hook gives

components an opportunity to provide additional information to the application before the termination happens. For

example, a test may want to execute the report function of a particular component even when an error condition has

happened to force a premature termination. The member function pre_abort shall be called for all UVM

components in the hierarchy in a bottom-up fashion.

7.1.10 Macros

UVM-SystemC defines the following macros for class uvm_component:

 Utility macro UVM_COMPONENT_UTILS(classname) to be used inside the Class definition, that

expands to:

o The declaration of the member function get_type_name, which returns the type of the class as

string

UVM-SystemC Language Reference Manual – DRAFT Page 94

o The declaration of the member function get_type, which returns a factory proxy object for the

type

o The class uvm_component_registry<classname> used by the factory.

Template classes shall use the macro UVM_COMPONENT_PARAM_UTILS, to guarantee correct registration of

one or more parameters passed to the class template. Note that template classes are not evaluated at compile-time,

and thus not registered with the factory. Due to this, name-based lookup with the factory for template classes is not

possible. Instead, an application shall use the member function get_type for factory overrides.

7.2 uvm_driver

The class uvm_driver is the base class for drivers that initiate requests for new transactions. The ports are typically

connected to the exports of an appropriate sequencer component of class uvm_sequencer.

7.2.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>

 class uvm_driver : public uvm_component

 {

 public:

 uvm_seq_item_pull_port<REQ, RSP> seq_item_port;

 uvm_analysis_port<RSP> rsp_port;

 explicit uvm_driver(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_driver

} // namespace uvm

7.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.These object

types must be a derivative of class uvm_sequence_item.

7.2.3 Ports

7.2.3.1 seq_item_port

uvm_seq_item_pull_port<REQ, RSP> seq_item_port;

The port seq_item_port of type uvm_seq_item_pull_port shall be defined to connect (bind) the driver to the

corresponding export in the sequencer.

Page 95 UVM-SystemC Language Reference Manual – DRAFT

NOTEIn line with the UVM-SystemVerilog syntax, the member function connect can be used to establish the binding between

the driver and the sequencer. The UVM-SystemC implementation also supports the SystemC syntax using the member function

bind or using operator() to perform the binding.

7.2.3.2 rsp_port

uvm_analysis_port<RSP> rsp_port;

The port rsp_port shall provide a way of sending responses back to the connected sequencer.

7.2.4 Member functions

7.2.4.1 Constructor

explicit uvm_driver(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.2.4.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an object of

type std::string.

7.3 uvm_monitor

The class uvm_monitor is the base class for monitors. Deriving from uvm_monitor allows an application to

distinguish monitors from generic component types inheriting from uvm_component. Such monitors will

automatically inherit features that may be added to uvm_monitor in the future.

7.3.1 Class definition

namespace uvm {

 class uvm_monitor : public uvm_component

 {

 public:

 explicit uvm_monitor(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_monitor

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 96

7.3.2 Member functions

7.3.2.1 Constructor

explicit uvm_monitor(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.3.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an object of

type std::string.

7.4 uvm_agent

The class uvm_agent is the base class for the creation of agents. Deriving from uvm_agent will allow an

application to distinguish agents from other component types also using its inheritance. Such agents will

automatically inherit features that may be added to uvm_agent in the future.

While an agent’s build function, inherited from uvm_component, can be implemented to define any agent topology,

an agent typically contains three subcomponents: a driver, sequencer, and monitor. If the agent is active, subtypes

should contain all three subcomponents. If the agent is passive, subtypes should contain only the monitor.

7.4.1 Class definition

namespace uvm {

 class uvm_agent : public uvm_component

 {

 public:

 explicit uvm_agent(uvm_component_name name);

 virtual const std::string get_type_name() const;

 uvm_active_passive_enum get_is_active() const;

 }; // class uvm_agent

} // namespace uvm

7.4.2 Member functions

7.4.2.1 Constructor

explicit uvm_agent(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

Page 97 UVM-SystemC Language Reference Manual – DRAFT

7.4.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an object of

type std::string.

7.4.2.3 get_is_active

uvm_active_passive_enum get_is_active();

The member function get_is_active shall return UVM_ACTIVE if the agent is acting as an active agent and

UVM_PASSIVE if it is acting as a passive agent (see 15.3.4). An application may override this behavior if a more

complex algorithm is needed to determine the active/passive nature of the agent.

7.5 uvm_env

The class uvm_env is the base class for the creation of a self-containing verification environment, such as a

verification component which contains multiple agents.

7.5.1 Class definition

namespace uvm {

 class uvm_env : public uvm_component

 {

 public:

 explicit uvm_env(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_env

} // namespace uvm

7.5.2 Member functions

7.5.2.1 Constructor

explicit uvm_env(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.5.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an object of

type std::string.

UVM-SystemC Language Reference Manual – DRAFT Page 98

7.6 uvm_test

The class uvm_test is the base class for the test environment.

7.6.1 Class definition

namespace uvm {

 class uvm_test : public uvm_component

 {

 public:

 explicit uvm_test(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_test

} // namespace uvm

7.6.2 Member functions

7.6.2.1 Constructor

explicit uvm_test(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.6.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the object derived from this class as an object of

type std::string.

7.7 uvm_scoreboard

The class uvm_scoreboard is the base class for the creation of a scoreboard. Deriving from uvm_scoreboard will

allow an application to distinguish scoreboards from other component types inheriting directly from

uvm_component. Such scoreboards will automatically inherit and benefit from features that may be added to

uvm_scoreboard in the future.

7.7.1 Class definition

namespace uvm {

 class uvm_scoreboard : public uvm_component

 {

Page 99 UVM-SystemC Language Reference Manual – DRAFT

 public:

 explicit uvm_scoreboard(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_scoreboard

} // namespace uvm

7.7.2 Member functions

7.7.2.1 Constructor

explicit uvm_scoreboard(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.7.2.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component derived from this class as an

object of type std::string.

7.8 uvm_subscriber

The class uvm_subscriber is the base class for the creation of a subscriber. It provides an analysis export for

receiving transactions from a connected analysis export. Making such a connection “subscribes” this component to

any transactions emitted by the connected analysis port.

Subtypes of this class must define the member function write to process the incoming transactions. This class is

particularly useful when designing a coverage collector that attaches to a monitor.

7.8.1 Class definition

namespace uvm {

 template <typename T = int>

 class uvm_subscriber : public uvm_component

 {

 public:

 uvm_analysis_export<T> analysis_export;

 explicit uvm_subscriber(uvm_component_name name);

 virtual const std::string get_type_name() const;

 }; // class uvm_subscriber

UVM-SystemC Language Reference Manual – DRAFT Page 100

} // namespace uvm

7.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis export.

7.8.3 Export

7.8.3.1 analysis_export

uvm_analysis_export<T> analysis_export;

The export analysis_export shall provide access to the member function write method, which derived subscribers

shall implement.

7.8.4 Member functions

7.8.4.1 Constructor

explicit uvm_subscriber(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

7.8.4.2 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of the component derived from this class as an

object of type std::string.

Page 101 UVM-SystemC Language Reference Manual – DRAFT

8. Sequencer classes

The sequencer classes offer the interface between the stimuli generators (by means of sequences) and the structural

composition of the test infrastructure using verification components. The sequencer is integral part of a verification

component, which can be enabled in case the verification component is marked as ‘active’ (driving) element.

The sequencer processes the transactions, defined as objects derived from class uvm_sequence_item or class

uvm_sequence and passes these transactions to the driver (object derived from class uvm_driver).

The following sequencer classes are defined:

 uvm_sequencer_base

 uvm_sequencer_param_base

 uvm_sequencer

NOTEThe UVM-SystemC sequencer classes only partially implement the standardized UVM sequencer capabilities.

However, these definitions are sufficient to build a functional sequencer.

8.1 uvm_sequencer_base

The class uvm_sequencer_base is the root base class for all sequencer classes.

8.1.1 Class definition

namespace uvm {

 class uvm_sequencer_base : public uvm_component

 {

 public:

 explicit uvm_sequencer_base(uvm_component_name name);

 bool is_child (uvm_sequence_base* parent, const uvm_sequence_base* child) const;

 virtual int user_priority_arbitration(

 std::vector< uvm_sequence_request* > avail_sequences);

 virtual void execute_item(uvm_sequence_item* item);

 virtual void start_phase_sequence(uvm_phase& phase);

 virtual void wait_for_grant(uvm_sequence_base* sequence_ptr,

 int item_priority = -1,

 bool lock_request = false);

 virtual void wait_for_item_done(uvm_sequence_base* sequence_ptr,

 int transaction_id = -1);

UVM-SystemC Language Reference Manual – DRAFT Page 102

 bool is_blocked(const uvm_sequence_base* sequence_ptr) const;

 bool has_lock(uvm_sequence_base* sequence_ptr);

 virtual void lock(uvm_sequence_base* sequence_ptr);

 virtual void grab(uvm_sequence_base* sequence_ptr);

 virtual void unlock(uvm_sequence_base* sequence_ptr);

 virtual void ungrab(uvm_sequence_base* sequence_ptr);

 virtual void stop_sequences();

 virtual bool is_grabbed() const;

 virtual uvm_sequence_base* current_grabber() const;

 virtual bool has_do_available();

 void set_arbitration(SEQ_ARB_TYPE mode);

 SEQ_ARB_TYPE get_arbitration() const;

 virtual void wait_for_sequences();

 virtual void send_request(uvm_sequence_base* sequence_ptr,

 uvm_sequence_item* seq_item,

 bool rerandomize = false);

 }; // class uvm_sequencer_base

} // namespace uvm

8.1.2 Constructor

explicit uvm_sequencer_base(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.1.3 Member functions

8.1.3.1 is_child

bool is_child (uvm_sequence_base* parent, const uvm_sequence_base* child) const;

The member function is_child shall return true if the child sequence is a child of the parent sequence and false

otherwise.

8.1.3.2 user_priority_arbitration

virtual int user_priority_arbitration(std::vector< uvm_sequence_request* > avail_sequences);

The member function user_priority_arbitration shall be called by an application when the sequencer arbitration

mode is set to SEQ_ARB_USER (via the member function set_arbitration) each time that it needs to arbitrate

Page 103 UVM-SystemC Language Reference Manual – DRAFT

among sequences. Derived sequencers may override this member function to perform a custom arbitration policy.

The override shall return one of the entries from the avail_sequences queue, which are indexes into an internal

queue of type std::vector< uvm_sequence_request* >. The default implementation shall behave similar as

SEQ_ARB_FIFO, which returns the first entry of avail_sequences.

8.1.3.3 execute_item

virtual void execute_item(uvm_sequence_item* item);

The member function execute_item shall execute the given transaction item given as argument directly on this

sequencer. A temporary parent sequence is automatically created for the item. There is no capability to retrieve

responses. If the driver returns responses, they will accumulate in the sequencer, eventually causing response

overflow unless member function uvm_sequence_base::set_response_queue_error_report_disabled is called.

8.1.3.4 start_phase_sequence

virtual void start_phase_sequence(uvm_phase phase);

The member function start_phase_sequence shall start the default sequence for the phase given as argument. The

default sequence is configured via resources using either a sequence instance or sequence type (object wrapper). If

both are used, the sequence instance takes precedence. When attempting to override a previous default sequence

setting, an application shall override both the instance and type (wrapper) resources, else the override may not take

effect.

8.1.3.5 wait_for_grant

virtual void wait_for_grant(uvm_sequence_base* sequence_ptr,

 int item_priority = -1,

 bool lock_request = false);

The member function wait_for_grant shall issue a request for the specified sequence. If item_priority is not

specified, then the current sequence priority shall be used by the arbiter. If a lock_request is made, then the

sequencer shall issue a lock immediately before granting the sequence. The lock may be granted without the

sequence being granted if the member function is_relevant of the sequence instance is not asserted.

When this member function returns, the sequencer has granted the sequence, and the sequence must call

send_request without inserting any simulation delay other than delta cycles. The driver is currently waiting for the

next item to be sent via the send_request call.

8.1.3.6 wait_for_item_done

virtual void wait_for_item_done(uvm_sequence_base* sequence_ptr,

 int transaction_id = -1);

The member function wait_for_item_done shall block the sequence until the driver calls item_done or put on a

transaction issued by the specified sequence. If no transaction_id parameter is specified, then the call will return the

next time that the driver calls item_done or put. If a specific transaction_id is specified, then the call will only

return when the driver indicates that it has completed that specific item.

UVM-SystemC Language Reference Manual – DRAFT Page 104

8.1.3.7 is_blocked

bool is_blocked(const uvm_sequence_base* sequence_ptr) const;

The member function is_blocked shall return true if the sequence referred to by sequence_ptr is currently locked out

of the sequencer. It shall return false if the sequence is currently allowed to issue operations.

Even when a sequence is not blocked, it is possible for another sequence to issue a lock before this sequence is able

to issue a request or lock.

8.1.3.8 has_lock

bool has_lock(uvm_sequence_base* sequence_ptr);

The member function has_lock shall return true if the sequence referred to in the parameter currently has a lock on

the sequencer; otherwise it shall return false. Even if this sequence has a lock, a child sequence may also have a

lock, in which case the sequence is still blocked from issuing operations on the sequencer.

8.1.3.9 lock

virtual void lock(uvm_sequence_base* sequence_ptr);

The member function lock shall request a lock for the sequence specified by the specified argument sequence_ptr. A

lock request will be arbitrated the same as any other request. A lock is granted after all earlier requests are

completed and no other locks or grabs are blocking this sequence. The lock call shall return when the lock has been

granted.

8.1.3.10 grab

virtual void grab(uvm_sequence_base* sequence_ptr);

The member function grab shall request a grab for the sequence specified by the specified argument sequence_ptr.

A grab request is put in front of the arbitration queue. It will be arbitrated before any other requests. A grab is

granted when no other grabs or locks are blocking this sequence. The grab call shall return when the grab has been

granted.

8.1.3.11 unlock

virtual void unlock(uvm_sequence_base* sequence_ptr);

The member function unlock shall remove any locks and grabs obtained by the specified argument sequence_ptr.

8.1.3.12 ungrab

virtual void ungrab(uvm_sequence_base* sequence_ptr);

The member function ungrab shall remove any locks and grabs obtained by the specified argument sequence_ptr.

8.1.3.13 stop_sequences

virtual void stop_sequences();

Page 105 UVM-SystemC Language Reference Manual – DRAFT

The member function stop_sequences shall inform the the sequencer to kill all sequences and child sequences

currently operating on the sequencer, and remove all requests, locks and responses that are currently queued. This

essentially resets the sequencer to an idle state.

8.1.3.14 is_grabbed

virtual bool is_grabbed() const;

The member function is_grabbed shall return true if any sequence currently has a lock or grab on this sequencer;

otherwise it shall return false.

8.1.3.15 current_grabber

virtual uvm_sequence_base* current_grabber() const;

The member function current_grabber shall return a pointer to the sequence that currently has a lock or grab on the

sequence. If multiple hierarchical sequences have a lock, it returns the child that is currently allowed to perform

operations on the sequencer.

8.1.3.16 has_do_available

virtual bool has_do_available();

The member function has_do_available shall return true if any sequence running on this sequencer is ready to

supply a transaction, otherwise it shall return false.

8.1.3.17 set_arbitration

void set_arbitration(SEQ_ARB_TYPE mode);

The member function set_arbitration shall set the arbitration mode for the sequencer. The argument mode shall be

of type SEQ_ARB_TYPE and set to

 SEQ_ARB_FIFO: Requests are granted in FIFO order (default).

 SEQ_ARB_WEIGHTED: Requests are granted randomly by weight.

 SEQ_ARB_RANDOM: Requests are granted randomly.

 SEQ_ARB_STRICT_FIFO: Requests at highest priority granted in FIFO order.

 SEQ_ARB_STRICT_RANDOM: Requests at highest priority granted in randomly.

 SEQ_ARB_USER: Arbitration is delegated to the user-defined member function;

user_priority_arbitration. That member function will specify the next sequence to grant.

The default arbitration mechanism shall be set to SEQ_ARB_FIFO.

8.1.3.18 get_arbitration

SEQ_ARB_TYPE get_arbitration() const;

The member function get_arbitration shall return the current arbitration mode set for the sequencer (see 8.1.3.17).

UVM-SystemC Language Reference Manual – DRAFT Page 106

8.1.3.19 wait_for_sequences

virtual void wait_for_sequences();

The member function wait_for_sequences shall wait for a sequence to have a new item available.

8.1.3.20 send_request

virtual void send_request(uvm_sequence_base* sequence_ptr,

 uvm_sequence_item* seq_item,

 bool rerandomize = false);

Derived classes shall implement the member function send_request to send a request item to the sequencer, which

shall forward it to the driver. (See 8.2.2).

This function shall only be called after a wait_for_grant call.

NOTERerandomize capabilities are not yet implemented for UVM-SystemC.

8.2 uvm_sequencer_param_base

The class uvm_sequencer_param_base extends the base class uvm_sequencer_base for specific request (REQ)

and response (RSP) types, which are specified as template arguments.

8.2.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>

 class uvm_sequencer_param_base : public uvm_sequencer_base

 {

 public:

 explicit uvm_sequencer_param_base(uvm_component_name name);

 // Group: Requests

 void send_request(uvm_sequence_base* sequence_ptr,

 uvm_sequence_item* seq_item,

 bool rerandomize = false);

 REQ get_current_item() const;

 }; // class uvm_sequencer_param_base

} // namespace uvm

Page 107 UVM-SystemC Language Reference Manual – DRAFT

8.2.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object

types must be a derivative of class uvm_sequence_item.

8.2.3 Constructor

explicit uvm_sequencer_param_base(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.2.4 Requests

8.2.4.1 send_request

virtual void send_request(uvm_sequence_base* sequence_ptr,

 uvm_sequence_item* seq_item,

 bool rerandomize = false);

The member function send_request sends a request item pointed to by seq_item to the sequencer pointed to by

sequence_ptr. The sequencer shall forward it to the driver. This member function shall only be called after a call to

member function wait_for_grant.

NOTERerandomize capabilities are not yet implemented.

8.2.4.2 get_current_item

REQ get_current_item() const;

The member function get_current_item shall return the requested item of type REQ, which is currently being

executed by the sequencer. If the sequencer is not currently executing an item, this member function shall return

NULL.

The sequencer is executing an item from the time that get_next_item or peek is called by the driver until the time

that member function get or item_done is called by the driver. In case a driver calls member function get, the

current item cannot be shown, since the item is completed at the same time as it is requested.

8.3 uvm_sequencer

The class uvm_sequencer defines the interface for the TLM communication of sequences or sequence-items by

providing access via an export object of class sc_export.

8.3.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>

 class uvm_sequencer : public uvm_sequencer_param_base<REQ,RSP>,

UVM-SystemC Language Reference Manual – DRAFT Page 108

 public uvm_sqr_if_base<REQ, RSP>

 {

 public:

 explicit uvm_sequencer(uvm_component_name name);

 // Group: Exports

 uvm_seq_item_pull_imp<REQ, RSP, this> seq_item_export;

 // Group: Sequencer interface

 virtual REQ get_next_item(tlm::tlm_tag<REQ>* req = NULL);

 virtual bool try_next_item(REQ& req);

 virtual void item_done(const RSP& item, bool use_item = true);

 virtual void item_done();

 virtual REQ get(tlm::tlm_tag<REQ>* req = NULL);

 virtual void get(REQ& req);

 virtual REQ peek(tlm::tlm_tag<REQ>* req = NULL);

 virtual void put(const RSP& rsp);

 virtual void stop_sequences();

 }; // class uvm_sequencer

} // namespace uvm

8.3.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object

types must be a derivative of class uvm_sequence_item.

8.3.3 Constructor

explicit uvm_sequencer(uvm_component_name name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

8.3.4 Exports

8.3.4.1 seq_item_export

uvm_seq_item_pull_imp<REQ, RSP, this > seq_item_export;

The export seq_item_export shall provide access to the sequencer’s implementation uvm_seq_item_pull_imp via

the sequencer interface uvm_sqr_if_base <REQ, RSP> (see 14.13).

Page 109 UVM-SystemC Language Reference Manual – DRAFT

8.3.5 Sequencer interface

8.3.5.1 get_next_item

virtual REQ get_next_item(tlm::tlm_tag<REQ>* req = NULL);

The member function get_next_item shall retrieve the next available item from a sequence (see also 14.13.3.1).

8.3.5.2 try_next_item

virtual bool try_next_item(REQ& req);

The member function try_next_item shall retrieve the next available item from a sequence if one is available (see

also 14.13.3.2).

8.3.5.3 item_done

virtual void item_done(const RSP& item, bool use_item = true);

virtual void item_done();

The member function item_done shall indicate that the request is completed (see also 14.13.3.3).

8.3.5.4 get

virtual REQ get(tlm::tlm_tag<REQ>* req = NULL);

virtual void get(REQ& req);

The member function get shall retrieve the next available item from a sequence (see also 14.13.3.4).

8.3.5.5 peek

virtual REQ peek(tlm::tlm_tag<REQ>* req = NULL);

The member function peek shall return the current request item if one is in the FIFO (see also 14.13.3.5).

8.3.5.6 put

virtual void put(const RSP& rsp);

The member function put shall send a response back to the sequence that issued the request (see also 14.13.3.6).

8.3.5.7 stop_sequences

virtual void stop_sequences();

The member function stop_sequences shall tell the sequencer to kill all sequences and child sequences currently

operating on the sequencer, and remove all requests, locks and responses that are currently queued. This essentially

resets the sequencer to an idle state.

UVM-SystemC Language Reference Manual – DRAFT Page 110

8.3.6 Macros

8.3.6.1 UVM_DECLARE_P_SEQUENCER

UVM_DECLARE_P_SEQUENCER(SEQUENCER)

The macro UVM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is specified by

the argument SEQUENCER.

Page 111 UVM-SystemC Language Reference Manual – DRAFT

9. Sequence classes

The sequence classes offer the infrastructure to create stimuli descriptions based on transactions, encapsulated as a

sequence or sequence item. As the sequences and sequence items only describe stimuli, they are independent and

thus not part of the structural hierarchy of a UVM agent (in which sequencer, driver and monitor resides). Instead,

they are included at a higher functional layer defined within the UVM environment (e.g. encapsulated within a

verification component derived from class uvm_env) or as part of a UVM test environment (component derived

from class uvm_test).

The following sequence classes are defined:

 uvm_transaction

 uvm_sequence_item

 uvm_sequence_base

 uvm_sequence

When sequences are executed parallel, the sequencer will arbitrate among the parallel sequences. By default,

requests are granted in a first-in-first-out (FIFO) order (see 8.1.3.17).

9.1 uvm_transaction

The class uvm_transaction is the root base class for all UVM transactions. As such, the class uvm_sequence_item

will be derived from this class. The main purpose of this class is to provide timestamp properties, notification

events, and transaction recording.

9.1.1 Class definition

namespace uvm {

 class uvm_transaction : public uvm_object

 {

 public:

 uvm_transaction();

 explicit uvm_transaction(const std::string& name);

 void set_transaction_id(int id);

 int get_transaction_id() const;

 }; // class uvm_transaction

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 112

9.1.2 Constructors

uvm_transaction();

explicit uvm_transaction(const std::string& name);

The constructor shall create and initialize an instance of the class, which is derived from class uvm_object, with the

name name passed as an argument.

9.1.3 Constraints on usage

An application shall not create transactions based on this base class. Instead, it shall use the class

uvm_sequence_item or class uvm_sequence.

9.1.4 Member functions

9.1.4.1 set_transaction_id

void set_transaction_id(int id);

The member function set_transaction_id shall set the transaction’s numeric identifier (ID), passed as argument id.

If the transaction ID is not set via this member function, the transaction ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the sequence ID to route responses

in sequencers and to correlate responses to requests.

9.1.4.2 get_transaction_id

int get_transaction_id() const;

The member function get_transaction_id shall return the transaction’s numeric identifier (ID), which is -1 if not set

explicitly by set_transaction_id.

When using an object derived from class uvm_sequence <REQ, RSP> to generate stimulus, the transaction ID is

used along with the sequence ID to route responses in sequencers and to correlate responses to requests.

9.2 uvm_sequence_item

The class uvm_sequence_item is the base class for application-defined sequence items and also serves as the base

class for class uvm_sequence. The class uvm_sequence_item provides basic functionality for transactional objects,

both sequence items and sequences, to operate in the sequence mechanism.

9.2.1 Class definition

namespace uvm {

 class uvm_sequence_item : public uvm_transaction

 {

 public:

Page 113 UVM-SystemC Language Reference Manual – DRAFT

 uvm_sequence_item();

 explicit uvm_sequence_item(const std::string& name);

 void set_use_sequence_info(bool value);

 bool get_use_sequence_info() const;

 void set_id_info(uvm_sequence_item& item);

 virtual void set_sequencer(uvm_sequencer_base* sequencer);

 uvm_sequencer_base* get_sequencer() const;

 void set_parent_sequence(uvm_sequence_base* parent);

 uvm_sequence_base* get_parent_sequence() const;

 void set_depth(int value);

 int get_depth() const;

 virtual bool is_item() const;

 const std::string get_root_sequence_name() const;

 const uvm_sequence_base* get_root_sequence() const;

 const std::string get_sequence_path() const;

 }; // class uvm_sequence_item

} // namespace uvm

9.2.2 Constructors

uvm_sequence_item();

explicit uvm_sequence_item(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

9.2.3 Member functions

9.2.3.1 set_use_sequence_info

void set_use_sequence_info(bool value);

The member function set_use_sequence_info shall enable or disable printing, copying, or recording of sequence

information (sequencer, parent_sequence, sequence_id, etc.). When the argument of this member function is set to

false, then the usage of sequence information shall be disabled. When the argument of this member function is set to

true, the printing and copying of sequence information shall be enabled.

9.2.3.2 get_use_sequence_info

bool get_use_sequence_info() const;

UVM-SystemC Language Reference Manual – DRAFT Page 114

The member function get_use_sequence_info shall return true if the usage of sequence information, such as

printing and copying of sequence information, has been enabled. The member function shall return false if the usage

of sequence information has been disabled.

9.2.3.3 set_id_info

void set_id_info(uvm_sequence_item& item);

The member function set_id_info shall copy the sequence ID and transaction ID from the referenced item into the

calling item. This routine should always be used by drivers to initialize responses for future compatibility.

9.2.3.4 set_sequencer

virtual void set_sequencer(uvm_sequencer_base* sequencer);

The member function set_sequencer shall set the default sequencer, passed as argument, to be used for the sequence

or sequence item for which this member function is called. It shall take effect immediately, so it should not be called

while the sequence is actively communicating with the sequencer.

9.2.3.5 get_sequencer

uvm_sequencer_base* get_sequencer() const;

The member function get_sequencer shall return a pointer to the default sequencer used by the sequence or

sequence item for which this member function is called.

9.2.3.6 set_parent_sequence

void set_parent_sequence(uvm_sequence_base* parent);

The member function set_parent_sequence shall set the parent sequence, passed as an argument, of the sequence or

sequence item.

9.2.3.7 get_parent_sequence

uvm_sequence_base* get_parent_sequence() const;

The member function get_parent_sequence shall return a pointer to the parent sequence of any sequence for which

this member function was called. If this is a parent sequence, the member function shall return NULL.

9.2.3.8 set_depth

void set_depth(int value);

The member function set_depth shall set the depth of a particular sequence. If this member function is not called,

the depth of any sequence shall be calculated automatically. When called, the member function shall override the

automatically calculated depth, even if it is incorrect.

Page 115 UVM-SystemC Language Reference Manual – DRAFT

9.2.3.9 get_depth

int get_depth() const;

The member function get_depth shall return the depth of sequence from its parent. A parent sequence will have a

depth of 1, its child will have a depth of 2, and its grandchild will have a depth of 3.

9.2.3.10 is_item

virtual bool is_item() const;

The member function is_item shall return true when the object for which the member function is called is derived

from uvm_sequence_item. It shall return false if the object is derived from class uvm_sequence.

9.2.3.11 get_root_sequence_name

const std::string get_root_sequence_name() const;

The member function get_root_sequence_name shall provide the name of the root sequence (the top-most parent

sequence).

9.2.3.12 get_root_sequence

const uvm_sequence_base* get_root_sequence() const;

The member function get_root_sequence shall provide a reference to the root sequence (the top-most parent

sequence).

9.2.3.13 get_sequence_path

const std::string get_sequence_path() const;

The member function get_sequence_path shall provide a string of names of each sequence in the full hierarchical

path. The dot character ‘.’ is used as the separator between each sequence.

9.3 uvm_sequence_base

The class uvm_sequence_base defines the primary interface member functions to create, control and execute the

sequences.

9.3.1 Class definition

namespace uvm {

 class uvm_sequence_base : public uvm_sequence_item

 {

 public:

 explicit uvm_sequence_base(const std::string& name);

UVM-SystemC Language Reference Manual – DRAFT Page 116

 // Group: Sequence state

 uvm_sequence_state_enum get_sequence_state() const;

 void wait_for_sequence_state(unsigned int state_mask);

 // Group: Sequence execution

 virtual void start(uvm_sequencer_base* sqr,

 uvm_sequence_base* parent_sequence = NULL,

 int this_priority = -1,

 bool call_pre_post = true);

 virtual void pre_start();

 virtual void pre_body();

 virtual void pre_do(bool is_item);

 virtual void mid_do(uvm_sequence_item* this_item);

 virtual void body();

 virtual void post_do(uvm_sequence_item* this_item);

 virtual void post_body();

 virtual void post_start();

 // Group: Sequence control

 void set_priority(int value);

 int get_priority() const;

 virtual bool is_relevant() const;

 virtual void wait_for_relevant() const;

 void lock(uvm_sequencer_base* sequencer = NULL);

 void grab(uvm_sequencer_base* sequencer = NULL);

 void unlock(uvm_sequencer_base* sequencer = NULL);

 void ungrab(uvm_sequencer_base* sequencer = NULL);

 bool is_blocked() const;

 bool has_lock();

 void kill();

 virtual void do_kill();

 // Group: Sequence item execution

 uvm_sequence_item* create_item(uvm_object_wrapper* type_var,

 uvm_sequencer_base* l_sequencer,

 const std::string& name);

Page 117 UVM-SystemC Language Reference Manual – DRAFT

 virtual void start_item(uvm_sequence_item* item,

 int set_priority = -1,

 uvm_sequencer_base* sequencer = NULL);

 virtual void finish_item(uvm_sequence_item* item,

 int set_priority = -1);

 virtual void wait_for_grant(int item_priority = -1,

 bool lock_request = false);

 virtual void send_request(uvm_sequence_item* request,

 bool rerandomize = false);

 virtual void wait_for_item_done(int transaction_id = -1);

 // Group: Response interface

 void use_response_handler(bool enable);

 bool get_use_response_handler() const;

 virtual void response_handler(const uvm_sequence_item* response);

 void set_response_queue_error_report_disabled(bool value);

 bool get_response_queue_error_report_disabled() const;

 void set_response_queue_depth(int value);

 int get_response_queue_depth() const;

 virtual void clear_response_queue();

 // Data members

 uvm_phase* starting_phase;

 }; // class uvm_sequence_base

} // namespace uvm

9.3.2 Constructor

explicit uvm_sequence_base(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

UVM-SystemC Language Reference Manual – DRAFT Page 118

9.3.3 Sequence state

9.3.3.1 get_sequence_state

uvm_sequence_state_enum get_sequence_state() const;

The member function get_sequence_state shall return the sequence state as an enumerated value of type

uvm_sequence_state_enum (see 15.3.5). This member function can be used to wait on the sequence reaching or

changing from one or more states.

9.3.3.2 wait_for_sequence_state

void wait_for_sequence_state(unsigned int state_mask);

The member function wait_for_sequence_state shall wait until the sequence reaches one of the given states. If the

sequence is already in one of these states, the member function shall return immediately.

9.3.4 Sequence execution

9.3.4.1 start

virtual void start(uvm_sequencer_base* sequencer,

 uvm_sequence_base* parent_sequence = NULL,

 int this_priority = -1,

 bool call_pre_post = true);

The member function start shall execute the sequence. The argument sequencer specifies the sequencer on which to

run this sequence. The sequencer must be compatible with the sequence, that is, the sequencer shall recognize the

communicated request and response types.

If parent_sequence is not passed as argument or set to NULL, then the sequence is treated as a root sequence,

otherwise it is a child of a parent sequence. In the latter case, the parent sequence’s member functions pre_do,

mid_do, and post_do shall be called during the execution of this sequence.

If this_priority is not passed as argument or set to -1, the priority of a sequence is set to priority of its parent

sequence. If it is a root (parent) sequence, its default priority is 100. A different priority greater than zero may be

specified using this argument. Higher numbers indicate higher priority.

If argument call_pre_post is not passed or set to true, then the member functions pre_body and post_body will be

called before and after calling the member function body of the sequence.

9.3.4.2 pre_start

virtual void pre_start();

The member function pre_start shall be provided as a callback for the application that is called before the optional

execution of member function pre_body. The application shall not call this member function.

Page 119 UVM-SystemC Language Reference Manual – DRAFT

9.3.4.3 pre_body

virtual void pre_body();

The member function pre_body shall be provided as a callback for the application that is called before the execution

of member function body, but only when the sequence is started by using member function start. If start is called

with argument call_pre_post set to false, the member function pre_body shall not be called. The application shall

not call this member function.

9.3.4.4 pre_do

virtual void pre_do(bool is_item);

The member function pre_do shall be provided as a callback for the application that is called on the parent

sequence, if the sequence has issued a wait_for_grant call and after the sequencer has selected this sequence, and

before the item is randomized. The application shall not call this member function.

9.3.4.5 mid_do

virtual void mid_do(uvm_sequence_item* this_item);

The member function mid_do shall be provided as a callback for the application that is called after the sequence

item has been randomized, and just before the item is sent to the driver. The application shall not call this member

function.

9.3.4.6 body

virtual void body();

The member function body shall be provided as a callback for the application that is called before the optional

execution of member function post_body. The application shall not call this member function.

NOTEIn an application, the implementation of the sequence resides in this member function.

9.3.4.7 post_do

virtual void post_do(uvm_sequence_item* this_item);

The member function post_do shall be provided as a callback for the application that is called after the driver has

indicated that it has completed the sequence item, calling either the member function item_done or put. The

application shall not call this member function.

9.3.4.8 post_body

virtual void post_body();

The member function post_body shall be provided as a callback for the application that is called before the

execution of member function post_start, but only when the sequence is started by using member function start. If

start is called with argument call_pre_post set to false, the member function post_body shall not be called. The

application shall not call this member function.

UVM-SystemC Language Reference Manual – DRAFT Page 120

9.3.4.9 post_start

virtual void post_start();

The member function post_start shall be provided as a callback for the application that is called after the optional

execution of member function post_body. The application shall not call this member function.

9.3.5 Sequence control

9.3.5.1 set_priority

void set_priority(int value);

The member function set_priority shall set the priority of a sequence. The default priority value for a sequence is

100. Higher values result in higher priorities. When the priority of a sequence is changed, the new priority will be

used by the sequencer the next time that it arbitrates between sequences.

9.3.5.2 get_priority

int get_priority() const;

The member function get_priority shall return the current priority of the sequence.

9.3.5.3 is_relevant

virtual bool is_relevant() const;

The member function is_relevant shall mark a sequence as being relevant or not. By default, the member function

is_relevant shall return true, indicating that the sequence is always relevant.

An application may choose to overload this member function to indicate to the sequencer that the sequence is not

currently relevant after a request has been made. Any sequence that implements the member function is_relevant

shall also implement wait_for_relevant, to enable a sequencer to wait for a sequence to become relevant.

When the sequencer arbitrates, it shall call the member function is_relevant on each requesting, unblocked sequence

to see if it is relevant. If this member function returns false, then the sequence will not be chosen.

If all requesting sequences are not relevant, then the sequencer shall call wait_for_relevant on all sequences and re-

arbitrate upon its return.

9.3.5.4 wait_for_relevant

virtual void wait_for_relevant() const;

The member function shall be called by the sequencer when all available sequences are not relevant. When

wait_for_relevant returns, the sequencer attempts to re-arbitrate.

Returning from this call does not guarantee that a sequence is relevant, although that would be the ideal. This

member function shall provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a sequence is always relevant), then

the sequence must also implement the member function wait_for_relevant.

Page 121 UVM-SystemC Language Reference Manual – DRAFT

9.3.5.5 lock

void lock(uvm_sequencer_base* sequencer = NULL);

The member function lock shall request a lock on the specified sequencer. If sequencer is NULL, the lock will be

requested on the current default sequencer. A lock request will be arbitrated the same as any other request. A lock is

granted after all earlier requests are completed and no other locks or grabs are blocking this sequence. The lock call

shall return when the lock has been granted.

9.3.5.6 grab

void grab(uvm_sequencer_base* sequencer = NULL);

The member function grab shall request a lock on the specified sequencer. If sequencer is NULL, the grab will be

requested on the current default sequencer. A grab request is put in front of the arbitration queue. It will be arbitrated

before any other requests. A grab is granted when no other grabs or locks are blocking this sequence. The grab call

shall return when the grab has been granted.

9.3.5.7 unlock

void unlock(uvm_sequencer_base* sequencer = NULL);

The member function unlock shall remove any locks or grabs obtained by this sequence on the specified sequencer.

If the sequencer is NULL, then the unlock will be done on the current default sequencer.

9.3.5.8 ungrab

void ungrab(uvm_sequencer_base* sequencer = NULL);

The member function ungrab shall remove any locks or grabs obtained by this sequence on the specified sequencer.

If the sequencer is NULL, then the ungrab will be done on the current default sequencer.

9.3.5.9 is_blocked

bool is_blocked() const;

The member function is_blocked shall return a Boolean type indicating whether this sequence is currently prevented

from running due to another lock or grab. A true is returned if the sequence is currently blocked. A false is returned

if no lock or grab prevents this sequence from executing. Even if a sequence is not blocked, it is possible for another

sequence to issue a lock or grab before this sequence can issue a request.

9.3.5.10 has_lock

bool has_lock();

The member function has_lock shall return true if this sequence has a lock; otherwise it shall return false. Even if

this sequence has a lock, a child sequence may also have a lock, in which case the sequence is still blocked from

issuing operations on the sequencer.

UVM-SystemC Language Reference Manual – DRAFT Page 122

9.3.5.11 kill

 void kill();

The member function kill shall shall kill the sequence, and cause all current locks and requests in the sequence’s

default sequencer to be removed. The sequence state shall be changed to STOPPED and the callback functions

post_body and post_start are not being executed.

9.3.5.12 do_kill

virtual void do_kill();

The member function do_kill shall provide a callback for an application that is called whenever a sequence is

terminated by using either kill or stop_sequences.

9.3.6 Sequence item execution

9.3.6.1 create_item

uvm_sequence_item* create_item(uvm_object_wrapper* type_var,

 uvm_sequencer_base* l_sequencer,

 const std::string& name);

The member function create_item shall create and initialize a sequence item of class uvm_sequence_item or

sequence of class uvm_sequence using the factory. The type of the created object, being a sequence item or

sequence, is defined by the first argument type_var, which shall be of type uvm_sequence_item or uvm_sequence

only. The sequence item or sequence will be initialized to communicate with the specified sequencer l_sequencer

passed as second argument. The name of the created item shall be passed as third argument.

9.3.6.2 start_item

virtual void start_item(uvm_sequence_item* item,

 int set_priority = -1,

 uvm_sequencer_base* sequencer = NULL);

The member function start_item shall initiate execution of a sequence item specified as argument item. If the item

has not already been initialized using member function create_item, then it will be initialized here by using the

sequencer specified by argument sequencer. If argument sequencer is not specified or set to NULL, the default

sequencer will be used (see also 9.2.3.4). The argument set_priority can be used to specify the priority for the

execution. If argument set_priority is not specified or set to -1, the default priority shall be 100. Randomization, or

other member functions, may be done between start_item and finish_item to ensure late generation.

9.3.6.3 finish_item

 virtual void finish_item(uvm_sequence_item* item,

 int set_priority = -1);

Page 123 UVM-SystemC Language Reference Manual – DRAFT

The member function finish_item shall finalize execution of execution of a sequence item specified as argument

item. The member function shall be called after start_item with no delays or delta-cycles. The argument set_priority

can be used to specify the priority for the execution. If argument set_priority is not specified or set to -1, the default

priority shall be 100. Randomization, or other member functions, may be called between start_item and

finish_item.

9.3.6.4 wait_for_grant

virtual void wait_for_grant(int item_priority = -1,

 bool lock_request = false);

The member function wait_for_grant shall issue a request to the current sequencer. If argument item_priority is not

specified or set to -1, then the current sequence priority will be used by the arbiter. If the argument lock_request is

set to true, then the sequencer will issue a lock immediately before granting the sequence.

NOTEThe lock may be granted without the sequence being granted if member function is_relevant is not asserted.

9.3.6.5 send_request

virtual void send_request(uvm_sequence_item* request,

 bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which

shall forward it to the driver. If argument rerandomize is set to true, the item will be randomized before being sent to

the driver.

NOTEIn an application, the member function send_request shall only be called after a call to wait_for_grant.

9.3.6.6 wait_for_item_done

virtual void wait_for_item_done(int transaction_id = -1);

The member function wait_for_item_done shall block until the driver calls item_done or put. If no transaction_id

argument is specified, then the call will return the next time that the driver calls item_done or put. If a specific

transaction_id is specified, then the call will return when the driver indicates completion of that specific item.

NOTEIf a specific transaction_id has been specified, and the driver has already issued an item_done or put for that transaction,

then the call will hang, having missed the earlier notification.

9.3.7 Response interface

9.3.7.1 use_response_handler

void use_response_handler(bool enable);

The member function use_response_handler shall send responses to the response handler when argument enable is

set to true. By default, responses from the driver are retrieved in the sequence by calling member function

get_response.

UVM-SystemC Language Reference Manual – DRAFT Page 124

9.3.7.2 get_use_response_handler

bool get_use_response_handler() const;

The member function get_use_response_handler shall return the state set by use_response_handler. If this

member function returns false, the response handler is disabled.

9.3.7.3 response_handler

virtual void response_handler(const uvm_sequence_item* response);

The member function response_handler shall be provided to enable the sequencer, in case returns true, to call this

member function for each response that arrives for this sequence.

9.3.7.4 set_response_queue_error_report_disabled

void set_response_queue_error_report_disabled(bool value);

The member function set_response_queue_error_report_disabled shall enable error reporting of overflows of the

reponse queue. The response queue will overflow if more responses are sent to this sequence from the driver than

calls to member function get_response are made. If argument value is set to false, error reporting is disabled. If

argument value is set to true, error reporting is enabled. By default, if the response queue overflows, an error is

reported.

9.3.7.5 get_response_queue_error_report_disabled

bool get_response_queue_error_report_disabled() const;

The member function get_response_queue_error_report_disabled shall return the reporting status of an overflow

of the response queue. It returns false when error reports are generated and returns true if no such error reports are

generated.

9.3.7.6 set_response_queue_depth

void set_response_queue_depth(int value);

The member function set_response_queue_depth shall set the depth of the reponse queue. The default maximum

depth of the response queue is 8. An argument value of -1 defines an unbound response queue.

9.3.7.7 get_response_queue_depth

int get_response_queue_depth() const;

The member function get_response_queue_depth shall return the current depth for the response queue. An

unbound response queue returns the value -1.

9.3.7.8 clear_response_queue

virtual void clear_response_queue();

The member function clear_response_queue shall empty the response queue for the sequence.

Page 125 UVM-SystemC Language Reference Manual – DRAFT

9.3.8 Data members

9.3.8.1 starting_phase

uvm_phase* starting_phase;

The data member starting_phase shall specify the phase in which this sequence was started. The starting_phase

shall be set when the sequence is started as the default sequence (see 8.1.3.3).

9.4 uvm_sequence

The class uvm_sequence extends the base class uvm_sequence_base for specific request (REQ) and response

(RSP) types, which are specified as template arguments.

9.4.1 Class definition

namespace uvm {

 template <typename REQ = uvm_sequence_item, typename RSP = REQ>

 class uvm_sequence : public uvm_sequence_base

 {

 public:

 explicit uvm_sequence(const std::string& name);

 void send_request(uvm_sequence_item* request,

 bool rerandomize = false);

 REQ get_current_item() const;

 virtual void get_response(RSP*& response,

 int transaction_id = -1);

 }; // class uvm_sequence

} // namespace uvm

9.4.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object

types must be a derivative of class uvm_sequence_item.

UVM-SystemC Language Reference Manual – DRAFT Page 126

9.4.3 Constructor

explicit uvm_sequence(const std::string& name);

The constructor shall create and initialize an instance of the class with the name name passed as an argument.

9.4.4 Member functions

9.4.4.1 send_request

void send_request(uvm_sequence_item* request,

 bool rerandomize = false);

The member function send_request shall send the request item, passed as an argument, to the sequencer, which

shall forward it to the driver. If argument rerandomize is set to true, the item will be randomized before being sent to

the driver.

NOTEIn an application, the member function send_request shall only be called after a call to wait_for_grant.

9.4.4.2 get_current_item

REQ get_current_item() const;

The member function get_current_item shall return the request item currently being executed by the sequencer. If

the sequencer is not currently executing an item, this method will return NULL. The sequencer is executing an item

from the time that get_next_item or peek is called until the time that get or item_done is called.

NOTEA driver that only calls get will never show a current item, since the item is completed at the same time as it is requested.

9.4.4.3 get_response

virtual void get_response(RSP*& response,

 int transaction_id = -1);

The member function get_response shall retrieve a response via the response queue. If no response is available in

the response queue, the member function will block until a response is received.

If no transaction_id is passed as an argument, this member function will return the next response sent to this

sequence. If a transaction_id is specified, the member function will block until a response with that transaction ID is

received in the response queue.

Page 127 UVM-SystemC Language Reference Manual – DRAFT

10. Configuration and resource classes

The configuration and resource classes provide access to a centralized database where type specific information can

be stored and retrieved. A configuration or resource item may be associated with a specific hierarchical scope of an

object derived from class uvm_component or it may be visible to all components regardless of their hierarchical

position.

The following configuration and resource classes are defined:

 uvm_config_db

 uvm_resource_db

 uvm_resource_db_options

 uvm_resource_options

 uvm_resource_base

 uvm_resource_pool

 uvm_resource

 uvm_resource_types

10.1 uvm_config_db

The class uvm_config_db provides a typed interface for object-centric configuration. It is consistent with the

configuration mechanism as defined for the class uvm_component. Information can be read from or written to the

database at any time during simulation.

10.1.1 Class definition

namespace uvm {

 template <class T>

 class uvm_config_db

 {

 public:

 uvm_config_db();

 static void set(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name,

 const T& value);

 static bool get(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name,

UVM-SystemC Language Reference Manual – DRAFT Page 128

 T& value);

 static bool exists(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name,

 bool spell_chk = false);

 static void wait_modified(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name);

 }; // class uvm_config_db

} // namespace uvm

10.1.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the configuration

database.

10.1.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_config_db are static, so

they must be called using the operator::.

10.1.4 Member functions

10.1.4.1 set

static void set(uvm_component* cntxt,

 const std::string& instname,

 const std::string& fieldname,

 const T& value);

The member function set shall create a new or update an existing configuration setting using target field field_name

in instance with name inst_name from the context cntxt in which it is defined. If argument cntxt is set to NULL, then

inst_name defines the complete scope for the configuration setting; otherwise, the full name of the component

referenced to by cntxt shall be added to the instance name. An application may define inst_name and field_name to

be glob-style or regular expression style expressions.

10.1.4.2 get

static bool get(uvm_component* cntxt,

Page 129 UVM-SystemC Language Reference Manual – DRAFT

 const std::string& instname,

 const std::string& fieldname,

 T& value);

The member function get shall retrieve a configuration setting via arguments inst_name and field_name, using a

component pointer cntxt as the starting search point. The argument inst_name shall be an explicit instance name

relative to cntxt and may be an empty string if the cntxt is the instance that the configuration object applies to. The

argument field_name is the specific field in the scope that is being searched for.

The member function returns true if the value is being found; otherwise, false is returned.

10.1.4.3 exists

static bool exists(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name,

 bool spell_chk = false);

The member function exists shall check if a value for field_name is available in inst_name, using component cntxt

as the starting search point. inst_name is an explicit instance name relative to cntxt and may be an empty string if the

cntxt is the instance that the configuration object applies to. field_name is the specific field in the scope that is being

searched for. The argument spell_chk can be set to true to turn spell checking on if it is expected that the field should

exist in the database. The function returns true if a config parameter exists and false if it does not exist.

10.1.4.4 wait_modified

static void wait_modified(uvm_component* cntxt,

 const std::string& inst_name,

 const std::string& field_name);

The member function wait_modified shall wait for a configuration setting to be set for field_name in cntxt and

inst_name. The member function blocks until a new configuration setting is applied that effects the specified field.

10.2 uvm_resource_db

The class uvm_resource_db provides a convenience interface for the resources facility. In many cases basic

operations such as creating and setting a resource or getting a resource could take multiple lines of code using the

interfaces in class uvm_resource_base or class uvm_resource. The convenience layer in class uvm_resource_db

reduces many of those operations to a single line of code.

10.2.1 Class definition

namespace uvm {

 template < typename T = uvm_object* >

 class uvm_resource_db

UVM-SystemC Language Reference Manual – DRAFT Page 130

 {

 public:

 static uvm_resource<T>* get_by_type(const std::string& scope);

 static uvm_resource<T>* get_by_name(const std::string& scope,

 const std::string& name,

 bool rpterr = true);

 static uvm_resource<T>* set_default(const std::string& scope,

 const std::string& name);

 static void set(const std::string& scope,

 const std::string& name,

 const T& val,

 uvm_object* accessor = NULL);

 static void set_anonymous(const std::string& scope,

 const T& val,

 uvm_object* accessor = NULL);

 static bool read_by_name(const std::string& scope,

 const std::string& name,

 T val,

 uvm_object* accessor = NULL);

 static bool read_by_type(const std::string& scope,

 T val,

 uvm_object* accessor = NULL);

 static bool write_by_name(const std::string& scope,

 const std::string& name,

 const T& val,

 uvm_object* accessor = NULL);

 static bool write_by_type(const std::string& scope,

 const T& val,

 uvm_object* accessor = NULL);

Page 131 UVM-SystemC Language Reference Manual – DRAFT

 static void dump();

 private:

 // disabled

 uvm_resource_db();

 }; // class uvm_config_db

} // namespace uvm

10.2.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource

database.

10.2.3 Constraints on usage

To remain compatible with UVM-SystemVerilog, all of the member functions in class uvm_resource_db are static,

so they must be called using the operator::. An application shall not instantiate this class, but shall call the static

member functions directly.

10.2.4 Member functions

10.2.4.1 get_by_type

static uvm_resource<T>* get_by_type(const std::string& scope);

The member function get_by_type shall return the resource by type. The type is specified in the database class

parameter so the only argument to this member function is the scope.

10.2.4.2 get_by_name

static uvm_resource<T>* get_by_name(const std::string& scope,

 const std::string& name,

 bool rpterr = true);

The member function get_by_name shall return the resource by name. The first argument is the current scope and

the second argument is the name of the resource to be retrieved. If the argument rpterr is set to true, a warning shall

be generated if no matching resource is found.

10.2.4.3 set_default

static uvm_resource<T>* set_default(const std::string& scope,

 const std::string& name);

UVM-SystemC Language Reference Manual – DRAFT Page 132

The member function set_default shall create a new resource with a default value and add it to the resource database

using arguments name and scope as the lookup parameters.

10.2.4.4 set

static void set(const std::string& scope,

 const std::string& name,

 const T& val,

 uvm_object* accessor = NULL);

The member function set shall create a new resource, write a value val to it, and add it to the resource database using

arguments name and scope as the lookup parameters. The argument accessor is used for auditing

10.2.4.5 set_anonymous

static void set_anonymous(const std::string& scope,

 const T& val,

 uvm_object* accessor = NULL);

The member function set_anonymous shall create a new resource, write a value val to it, and add it to the resource

database. As the resource has no argument name, it will not be entered into the name map. But is does have an

argument scope for lookup purposes. The argument accessor is used for auditing.

10.2.4.6 read_by_name

static bool read_by_name(const std::string& scope,

 const std::string& name,

 T val,

 uvm_object* accessor = NULL);

The member function read_by_name shall locate a resource by arguments name and scope and returns the value

through argument val. The member function shall return true if the read was successful; otherwise it shall return

false. The argument accessor is used for auditing.

10.2.4.7 read_by_type

static bool read_by_type(const std::string& scope,

 T val,

 uvm_object* accessor = NULL);

The member function read_by_type shall read a value by type. The value is returned through the argument val. The

argument scope is used for the lookup. The member function shall return true if the read was successful; otherwise it

shall return false. The argument accessor is used for auditing.

10.2.4.8 write_by_name

static bool write_by_name(const std::string& scope,

Page 133 UVM-SystemC Language Reference Manual – DRAFT

 const std::string& name,

 const T& val,

 uvm_object* accessor = NULL);

The member function write_by_name shall write the argument val into the resources database. First, look up the

resource by using arguments name and scope. If it is not located then add a new resource to the database and then

write its value.

10.2.4.9 write_by_type

static bool write_by_type(const std::string& scope,

 const T& val,

 uvm_object* accessor = NULL);

The member function write_by_type shall write the argument val into the resources database. First, look up the

resource by type. If it is not located then add a new resource to the database and then write its value.

Because the scope is matched to a resource which may be a regular expression, and consequently may target other

scopes beyond the scope argument. Care must be taken with this function. If a get_by_name match is found for

name and scope then val will be written to that matching resource and thus may impact other scopes which also

match the resource.

10.3 uvm_resource_db_options

The class uvm_resource_db_options shall provide a namespace for managing options for the resources database

facility. The class shall define static member functions for manipulating and retrieving the value of the data

members. The static data members represent options and settings that control the behavior of the resources database

facility.

10.3.1 Class definition

namespace uvm {

 class uvm_resource_db_options

 {

 public:

 static void turn_on_tracing();

 static void turn_off_tracing();

 static bool is_tracing();

 private:

 // Disabled

 uvm_resource_db_options();

UVM-SystemC Language Reference Manual – DRAFT Page 134

 }; // class uvm_resource_db_options

} // namespace uvm

10.3.2 Member functions

10.3.2.1 turn_on_tracing

static void turn_on_tracing();

The member function turn_on_tracing shall enable tracing for the resource database. This causes all reads and

writes to the database to display information about the accesses.

10.3.2.2 turn_off_tracing

static void turn_off_tracing();

The member function turn_off_tracing shall disable tracing for the resource database.

10.3.2.3 is_tracing

static bool is_tracing();

The member function is_tracing shall return true if the tracing facility is enabled; otherwise it shall return false.

10.4 uvm_resource_options

The class uvm_resource_options shall provide a namespace for managing options for the resources facility. The

class shall only provide static member functions for manipulating and retrieving the value of its data members.

10.4.1 Class definition

namespace uvm {

 class uvm_resource_options

 {

 public:

 static void turn_on_auditing();

 static void turn_off_auditing();

 static bool is_auditing();

 private:

 // Disabled

 uvm_resource_options();

Page 135 UVM-SystemC Language Reference Manual – DRAFT

 }; // class uvm_resource_options

} // namespace uvm

10.4.2 Member functions

10.4.2.1 turn_on_auditing

static void turn_on_auditing();

The member function turn_on_auditing shall enable auditing for the resource database. This causes all reads and

writes to the database to store information about the accesses. Auditing is enabled by default.

10.4.2.2 turn_off_auditing

static void turn_off_auditing();

The member function turn_off_auditing shall disable auditing for the resource database. If auditing is disabled, it is

not possible to get extra information about resource database accesses.

10.4.2.3 is_auditing

static bool is_auditing();

The member function is_auditing shall return true if auditing is enabled; otherwise it shall return false.

10.5 uvm_resource_base

The class uvm_resource_base shall provide a non-parameterized base class for resources. It supports interfaces for

scope matching and virtual member functions for printing the resource and accessors list.

10.5.1 Class definition

namespace uvm {

 class uvm_resource_base : public uvm_object

 {

 public:

 uvm_resource_base(const std::string& name = "",

 const std::string& scope = "*");

 // Group: Resource database interface

 virtual uvm_resource_base* get_type_handle() const = 0;

 // Group: Read-only interface

UVM-SystemC Language Reference Manual – DRAFT Page 136

 void set_read_only();

 bool is_read_only() const;

 // Group: Notification

 void wait_modified();

 // Group: Scope interface

 void set_scope(const std::string* scope);

 std::string get_scope() const;

 bool match_scope(const std::string& scope);

 // Group: Priority

 virtual void set_priority(uvm_resource_types::priority_e pri) = 0;

 // Group: Utility functions

 void do_print(const uvm_printer& printer) const;

 // Group: Audit trail

 void record_read_access(uvm_object* accessor = NULL);

 void record_write_access(uvm_object* accessor = NULL);

 virtual void print_accessors() const;

 void init_access_record(uvm_resource_types::access_t access_record);

 // Data members: Precedence

 unsigned int precedence;

 static int unsigned default_precedence;

 }; // class uvm_resource_base

} // namespace uvm

10.5.2 Constructor

uvm_resource_base(const std::string& name = "",

 const std::string& scope = "*");

The constructor takes two arguments, the name of the resource name and a regular expression scope which

represents the set of scopes over which this resource is visible.

Page 137 UVM-SystemC Language Reference Manual – DRAFT

10.5.3 Resource database interface

10.5.3.1 get_type_handle

virtual uvm_resource_base* get_type_handle() const = 0;

The member function get_type_handle shall return the type handle of the resource container.

10.5.4 Read-only interface

10.5.4.1 set_read_only

void set_read_only();

The member function set_read_only shall define the resource as a read-only resource. An attempt to call

uvm_resource<T>::write on the resource will cause an error.

10.5.4.2 is_read_only

bool is_read_only() const;

The member function is_read_only shall return true if this resource has been set to read-only; otherwise it shall

return false.

10.5.5 Notification

10.5.5.1 wait_modified

void wait_modified();

The member function wait_modified shall block execution until the resource has been modified, that is, it waits till

a uvm_resource<T>::write operation has been performed.

10.5.6 Scope interface

10.5.6.1 set_scope

void set_scope(const std::string& scope);

The member function set_scope shall set the value of the regular expression that identifies the set of scopes over

which this resource is visible. If the supplied argument is a glob it will be converted to a regular expression before it

is stored.

10.5.6.2 get_scope

std::string get_scope() const;

The member function get_scope shall retrieve the regular expression string that identifies the set of scopes over

which this resource is visible.

UVM-SystemC Language Reference Manual – DRAFT Page 138

10.5.6.3 match_scope

bool match_scope(const std::string& scope);

The member function match_scope shall return true if this resource is visible in a scope. The scope is specified as

argument and may use regular expressions.

10.5.7 Priority

10.5.7.1 set_priority

virtual void set_priority(uvm_resource_types::priority_e pri) = 0;

The member function set_priority shall change the search priority of the resource based on the value of the priority

enumeration given as argument.

10.5.8 Utility functions

10.5.8.1 do_print

void do_print(const uvm_printer& printer) const;

The member function do_print shall be called by member function print. It allows an application to implement

application-specific printing routines.

10.5.9 Audit trail

10.5.9.1 record_read_access

void record_read_access(uvm_object* accessor = NULL);

The member function record_read_access shall record the read access for this resource.

10.5.9.2 record_write_access

void record_write_access(uvm_object* accessor = NULL);

The member function record_write_access shall record the write access for this resource.

10.5.9.3 print_accessors

virtual void print_accessors() const;

The member function print_accessors shall print the access records for this resource.

10.5.9.4 init_access_record

void init_access_record(uvm_resource_types::access_t access_record);

The member function init_access_record shall initialize a new access record.

Page 139 UVM-SystemC Language Reference Manual – DRAFT

10.6 uvm_resource_pool

The class uvm_resource_pool shall provide the centralized resource pool to store each resource both by primary

name and by type handle.

10.6.1 Class definition

namespace uvm {

 class uvm_resource_pool

 {

 public:

 static uvm_resource_pool* get();

 bool spell_check(const std::string& s) const;

 // Group: Set interface

 void set(uvm_resource_base* rsrc, int override = 0);

 void set_override(uvm_resource_base* rsrc);

 void set_name_override(uvm_resource_base* rsrc);

 void set_type_override(uvm_resource_base* rsrc);

 // Group: Lookup

 uvm_resource_types::rsrc_q_t* lookup_name(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle,

 bool rpterr = true) const;

 uvm_resource_base* get_highest_precedence(uvm_resource_types::rsrc_q_t* q) const;

 static void sort_by_precedence(uvm_resource_types::rsrc_q_t* q);

 uvm_resource_base* get_by_name(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle,

 bool rpterr = true);

 uvm_resource_types::rsrc_q_t* lookup_type(const std::string& scope,

 uvm_resource_base* type_handle) const;

UVM-SystemC Language Reference Manual – DRAFT Page 140

 uvm_resource_base* get_by_type(const std::string& scope,

 uvm_resource_base* type_handle);

 uvm_resource_types::rsrc_q_t* lookup_regex_names(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle = NULL);

 uvm_resource_types::rsrc_q_t* lookup_regex(const std::string& re,

 const std::string& scope);

 uvm_resource_types::rsrc_q_t* lookup_scope(const std::string& scope);

 // Group: Set Priority

 void set_priority_type(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

 void set_priority_name(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

 void set_priority(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

 // Group: Debug

 uvm_resource_types::rsrc_q_t* find_unused_resources() const;

 void print_resources(uvm_resource_types::rsrc_q_t rq, bool audit = false) const;

 void dump(bool audit = false) const;

 }; // class uvm_resource_pool

} // namespace uvm

10.6.2 get

static uvm_resource_pool* get();

The member function get shall return the singleton handle to the resource pool.

10.6.3 spell_check

bool spell_check(const std::string& s) const;

Page 141 UVM-SystemC Language Reference Manual – DRAFT

The member function spell_check shall invoke the spell checker for the string s passed as argument. The universe of

correctly spelled strings—i.e. the dictionary—is the name map.

10.6.4 Set interface

10.6.4.1 set

void set(uvm_resource_base* rsrc, int override = 0);

The member function set shall add a new resource to the resource pool. The resource is inserted into both the name

map and type map so it can be located by either.

An object creates a resource and sets it into the resource pool. Later, other objects that want to access the resource

must get it from the pool.

Overrides can be specified using this interface. Either a name override, a type override or both can be specified. If an

override is specified, then the resource is entered at the front of the queue instead of at the back.

It is not recommended that an application specify the override parameter directly. Instead, an application should use

the member functions set_override, set_name_override, or set_type_override.

10.6.4.2 set_override

void set_override(uvm_resource_base* rsrc);

The member function set_override shall override the resource, provided as an argument, in the resource pool both

by name and type.

10.6.4.3 set_name_override

void set_name_override(uvm_resource_base* rsrc);

The member function set_name_override shall override the resource, provided as argument rsrc, in the resource

pool using normal precedence in the type map and will override the name.

10.6.4.4 set_type_override

void set_type_override(uvm_resource_base* rsrc);

The member function set_type_override shall override the resource, provided as argument rsrc, in the resource pool

using normal precedence in the name map and will override the type.

10.6.5 Lookup

10.6.5.1 lookup_name

uvm_resource_types::rsrc_q_t* lookup_name(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle,

 bool rpterr = true);

UVM-SystemC Language Reference Manual – DRAFT Page 142

The member function lookup_name shall return a queue of resources that match the name, scope, and type_handle,

which are passed as arguments. If no resources match the queue is returned empty. If rpterr is set, then a warning is

issued if no matches are found, and the spell checker is invoked on name. If type_handle is NULL, then a type check

is not made and resources are returned that match only name and scope.

10.6.5.2 get_highest_precedence

uvm_resource_base* get_highest_precedence(uvm_resource_types::rsrc_q_t* q) const;

The member function get_highest_precedence shall traverse the queue passes as argument, q, of resources and

return the one with the highest precedence. In the case where there exists more than one resource with the highest

precedence value, the first one that has that precedence will be the one that is returned.

10.6.5.3 sort_by_precedence

static void sort_by_precedence(uvm_resource_types::rsrc_q_t* q);

The member function sort_by_precedence shall sort the resources, passed as argument as a list of resources, in

precedence order. The highest precedence resource will be first in the list and the lowest precedence will be last.

Resources that have the same precedence and the same name will be ordered by most recently set first.

10.6.5.4 get_by_name

uvm_resource_base* get_by_name(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle,

 bool rpterr = true);

The member function get_by_name shall return the resource by using the arguments name, scope, and type_handle.

Whether the get succeeds or fails, save a record of the get attempt. If the argument rpterr is true, the member

function shall report potential errors.

10.6.5.5 lookup_type

uvm_resource_types::rsrc_q_t* lookup_type(const std::string& scope,

 uvm_resource_base* type_handle) const;

The member function lookup_type shall return a queue of resources that match the argument type_handle and

argument scope. If no resources match, then the returned queue is empty.

10.6.5.6 get_by_type

uvm_resource_base* get_by_type(const std::string& scope,

 uvm_resource_base* type_handle) const;

The member function get_by_type shall return the resources that match the argument type_handle and argument

scope. It shall insert a record into the get history list whether or not the get succeeded.

Page 143 UVM-SystemC Language Reference Manual – DRAFT

10.6.5.7 lookup_regex_names

uvm_resource_types::rsrc_q_t* lookup_regex_names(const std::string& scope,

 const std::string& name,

 uvm_resource_base* type_handle = NULL);

The member function lookup_regex_names shall return a queue of resources that match the arguments name,

scope, and type_handle, where name and scope may be expressed as a regular expression.

10.6.5.8 lookup_regex

uvm_resource_types::rsrc_q_t* lookup_regex(const std::string& re,

 const std::string& scope);

The member function lookup_regex shall return a queue of resources that whose name matches the regular

expression argument re and whose scope matches the specified argument scope.

10.6.5.9 lookup_scope

uvm_resource_types::rsrc_q_t* lookup_scope(const std::string& scope);

The member function lookup_scope shall return a queue of resources that are visible to a particular scope.

NOTEThis member function could be quite computation expensive, as it has to traverse all of the resources in the resource

database.

10.6.6 Set priority

10.6.6.1 set_priority_type

void set_priority_type(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

The member function set_priority_type shall change the priority of the resource rsrc in the resource type map only,

based on the value of priority enumeration argument pri. The priority in the resource name map remains unchanged.

10.6.6.2 set_priority_name

void set_priority_name(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

The member function set_priority_name shall change the priority of the resource rsrc in the resource name map

only, based on the value of priority enumeration argument pri. The priority in the resource type map remains

unchanged.

10.6.6.3 set_priority

void set_priority(uvm_resource_base* rsrc,

 uvm_resource_types::priority_e pri);

UVM-SystemC Language Reference Manual – DRAFT Page 144

The member function set_priority shall change the priority of the resource rsrc in the resource name map and type

map, based on the value of priority enumeration argument pri.

10.6.7 Debug

10.6.7.1 find_unused_resources

uvm_resource_types::rsrc_q_t* find_unused_resources() const;

The member function find_unused_resources shall return a queue of resources that have at least one write and no

reads.

10.6.7.2 print_resources

void print_resources(uvm_resource_types::rsrc_q_t rq, bool audit = false) const;

The member function print_resources shall print the queue of resources passed as argument rq. If the argument

audit is true, the audit trail is printed for each resource along with the name, value, and scope regular expression.

10.6.7.3 dump

void dump(bool audit = false) const;

The member function dump shall print the entire resource pool. The member function print_resources shall be

used to initiate the printing. If the argument audit is true, the audit trail is printed for each resource along with the

name, value, and scope regular expression.

10.7 uvm_resource

The class uvm_resource shall provide the interface to read and write to the resource database.

10.7.1 Class definition

namespace uvm {

 template <typename T = int>

 class uvm_resource : public uvm_resource_base

 {

 public:

 // Group: Type Interface

 static uvm_resource<T>* get_type();

 uvm_resource_base* get_type_handle() const;

 // Group: Set/Get Interface

 void set();

Page 145 UVM-SystemC Language Reference Manual – DRAFT

 void set_override(uvm_resource_types::override_t override =

 uvm_resource_types::BOTH_OVERRIDE);

 static uvm_resource<T>* get_by_name(const std::string& scope,

 const std::string& name,

 bool rpterr = true);

 static uvm_resource<T>* get_by_type(const std::string& scope,

 uvm_resource_base* type_handle);

 // Group: Read/Write Interface

 T read(uvm_object*& accessor);

 void write(const T& t, uvm_object*& accessor);

 // Group: Priority

 void set_priority(uvm_resource_types::priority_e pri);

 static uvm_resource<T>* get_highest_precedence(uvm_resource_types::rsrc_q_t* q);

 }; // class uvm_resource

} // namespace uvm

10.7.2 Template parameter T

The template parameter T specifies the object type of the objects being stored in or retrieved from the resource

database.

10.7.3 Type interface

10.7.3.1 get_type

static uvm_resource<T>* get_type();

The member function get_type shall return the static type handle. The return type is the type of the parameterized

class.

10.7.3.2 get_type_handle

uvm_resource_base* get_type_handle() const;

The member function get_type_handle shall return the static type handle of this resource in a polymorphic fashion.

The return type of get_type_handle is uvm_resource_base.

NOTEAs the member function is not static, it can only be used by instances of a parameterized resource.

UVM-SystemC Language Reference Manual – DRAFT Page 146

10.7.4 Set/Get interface

10.7.4.1 set

void set();

The member function set shall put the resource into the global resource pool.

10.7.4.2 set_override

void set_override(uvm_resource_types::override_t override =

 uvm_resource_types::BOTH_OVERRIDE);

The member function set_override shall put the resource into the global resource pool as an override. This means it

gets put at the head of the list and is searched before other existing resources that occupy the same position in the

name map or the type map. The default is to override both the name and type maps. However, using the override

argument you can specify that either the name map or type map is overridden.

10.7.4.3 get_by_name

static uvm_resource<T>* get_by_name(const std::string& scope,

 const std::string& name,

 bool rpterr = true);

The member function get_by_name shall look up a resource by name in the name map. The first resource with the

specified name, whose type is the current type, and is visible in the specified scope is returned, if one exists. The

rpterr flag indicates whether or not an error should be reported if the search fails. If rpterr is set to one then a failure

message is issued, including suggested spelling alternatives, based on resource names that exist in the database,

gathered by the spell checker.

10.7.4.4 get_by_type

static uvm_resource<T>* get_by_type(const std::string& scope,

 uvm_resource_base* type_handle);

The member function get_by_type shall look up a resource by type_handle in the type map. The first resource with

the specified type_handle that is visible in the specified scope is returned, if one exists. The member function shall

return NULL if there is no resource matching the specifications.

10.7.5 Read/Write interface

10.7.5.1 read

T read(uvm_object*& accessor);

The member function read shall return the object stored in the resource container. If an accessor object is supplied

then also update the accessor record for this resource.

Page 147 UVM-SystemC Language Reference Manual – DRAFT

10.7.5.2 write

void write(const T& t, uvm_object*& accessor);

The member function write shall modify the object stored in this resource container. If the resource is read-only

then issue an error message and return without modifying the object in the container. If the resource is not read-only

and an accessor object has been supplied then also update the accessor record. Lastly, replace the object value in the

container with the value supplied as the argument, t, and release any processes blocked on

uvm_resource_base::wait_modified.

10.7.6 Priority

10.7.6.1 set_priority

void set_priority(uvm_resource_types::priority_e pri);

The member function set_priority shall change the search priority of the resource based on the value of the priority

enum argument, pri.

10.7.6.2 get_highest_precedence

static uvm_resource<T>* get_highest_precedence(uvm_resource_types::rsrc_q_t* q);

The member function get_highest_precedence shall locate the first resource, in a queue of resources, with the

highest precedence whose type is T.

10.8 uvm_resource_types

The class uvm_resource_types shall provide typedefs and enums used throughout the resources facility. This class

shall not contain any member function or data members, only typedefs. It’s used in lieu of package-scope types.

10.8.1 Class definition

namespace uvm {

 class uvm_resource_types

 {

 public:

 typedef std::queue<uvm_resource_base* > rsrc_q_t;

 typedef enum { TYPE_OVERRIDE, NAME_OVERRIDE, BOTH_OVERRIDE } override_t;

 typedef enum { PRI_HIGH, PRI_LOW } priority_e;

 }; // class uvm_resource_types

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 148

10.8.2 Type definitions (typedefs)

10.8.2.1 rsrc_q_t

The typedef rsrc_q_t shall define a queue of handles of type uvm_resource_base.

NOTEUVM-SystemC does not define uvm_queue, since std::queue can be used.

10.8.2.2 override_t

The typedef override_t shall define an enumeration to override enumepriority of a resource. Valid values are:

 TYPE_OVERRIDE: Override a resource in the resource pool both by type.

 NAME_OVERRIDE: Override a resource in the resource pool both by name.

 BOTH_OVERRIDE: Override a resource in the resource pool both by name and type.

10.8.2.3 priority_e

The typedef priority_e shall define an enumeration for the priority of a resource. Valid values are:

 PRI_HIGH: High priority, which places the resource at the front of the queue.

 PRI_LOW: Low priority, which places the resource at the back of the queue.

Page 149 UVM-SystemC Language Reference Manual – DRAFT

11. Phasing and synchronization classes

The phasing and synchronization concept in UVM defines standardized stages called phases which are executed in a

well defined order. Each UVM component offers dedicated callbacks for each of these phases to implement

application-specific behavior. Phases are executed sequentially, but each phase may consist of multiple function

calls (of components contributing to that phase) in parallel. Besides standardized common and UVM run-time

phases, user-defined phases can be added.

In order to support synchronization during the execution of the run-time phases, which run as concurrent processes,

additional methods are available to coordinate the execution of or status of these processes between all UVM

components or objects.

The following phasing and synchronization classes are defined:

 uvm_phase: The base class for defining a phase’s behavior, state, context.

 uvm_domain: Phasing schedule node representing an independent branch of the schedule.

 uvm_bottomup_phase: A phase implementation for bottom up function phases.

 uvm_topdown_phase: A phase implementation for top-down function phases.

 uvm_process_phase: A phase implementation for phases which are launched as spawned processes. In

UVM-SystemVerilog, this class was called uvm_task_phase†.

 uvm_objection: Mechanism to synchronize phases based on passing execution status information between

running processes.

11.1 uvm_phase

The class uvm_phase shall provide the base class for the UVM phasing mechanism.

11.1.1 Class definition

namespace uvm {

 class uvm_phase : public uvm_object

 {

 public:

 // Group: Construction

 explicit uvm_phase(const std::string& name,

 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,

 uvm_phase* parent = NULL);

 uvm_phase_type get_phase_type() const;

 // Group: State

 uvm_phase_state get_state() const;

UVM-SystemC Language Reference Manual – DRAFT Page 150

 int get_run_count() const;

 uvm_phase* find_by_name(const std::string& name, bool stay_in_scope = true) const;

 uvm_phase* find(const uvm_phase* phase, bool stay_in_scope = true) const;

 bool is(const uvm_phase* phase) const;

 bool is_before(const uvm_phase* phase) const;

 bool is_after(const uvm_phase* phase) const;

 // Group: Callbacks

 virtual void exec_func(uvm_component* comp, uvm_phase* phase);

 virtual void exec_process(uvm_component* comp, uvm_phase* phase);

 // Group: Schedule

 void add(uvm_phase* phase,

 uvm_phase* with_phase = NULL,

 uvm_phase* after_phase = NULL,

 uvm_phase* before_phase = NULL);

 uvm_phase* get_parent() const;

 virtual const std::string get_full_name() const;

 uvm_phase* get_schedule(bool hier = false) const;

 std::string get_schedule_name(bool hier = false) const;

 uvm_domain* get_domain() const;

 std::string get_domain_name() const;

 uvm_phase* get_imp() const;

 // Group: Synchronization

 uvm_objection* get_objection() const;

 virtual void raise_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

 virtual void drop_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

 void sync(uvm_domain* target,

 uvm_phase* phase = NULL,

Page 151 UVM-SystemC Language Reference Manual – DRAFT

 uvm_phase* with_phase = NULL);

 void unsync(uvm_domain* target,

 uvm_phase* phase = NULL,

 uvm_phase* with_phase = NULL);

 void wait_for_state(uvm_phase_state state, uvm_wait_op op = UVM_EQ);

 // Group: Jumping

 void jump(const uvm_phase* phase);

 uvm_phase* get_jump_target() const;

 }; // class uvm_phase

} // namespace uvm

11.1.2 Construction

11.1.2.1 Constructor

explicit uvm_phase(const std::string& name,

 uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,

 uvm_phase* parent = NULL);

The constructor shall create a new phase node, using the arguments name, the type name of type type_name and

optionally the pointer to the parent phase parent, as argument.

11.1.2.2 get_phase_type

uvm_phase_type get_phase_type() const;

The member function get_phase_type shall return the phase type as defined by uvm_phase_type (see 15.3.6).

11.1.3 State

11.1.3.1 get_state

uvm_phase_state get_state() const;

The member function get_state shall return the current state of this phase.

11.1.3.2 get_run_count

int get_run_count() const;

The member function get_run_count shall return the integer number of times this phase has executed.

UVM-SystemC Language Reference Manual – DRAFT Page 152

11.1.3.3 find_by_name

uvm_phase* find_by_name(const std::string& name, bool stay_in_scope = true);

The member function find_by_name shall locate a phase node with the specified name and return its handle. If

argument stay_in_scope is true, it searches only within this phase’s schedule or domain.

11.1.3.4 find

uvm_phase* find(const uvm_phase* phase, bool stay_in_scope = true);

The member function find shall locate the phase node with the specified phase implementation and return its handle.

If argument stay_in_scope is true, it searches only within this phase’s schedule or domain.

11.1.3.5 is

bool is(const uvm_phase* phase) const;

The member function is shall return true if the containing uvm_phase refers to the same phase as the phase

argument; otherwise it shall return false.

11.1.3.6 is_before

bool is_before(const uvm_phase* phase) const;

The member function is_before shall return true if the containing uvm_phase refers to a phase that is earlier than

the phase argument; otherwise it shall return false.

11.1.3.7 is_after

bool is_after(const uvm_phase* phase) const;

The member function is_after shall return true if the containing uvm_phase refers to a phase that is later than the

phase argument; otherwise it shall return false.

11.1.4 Callbacks

11.1.4.1 exec_func

virtual void exec_func(uvm_component* comp, uvm_phase* phase);

The member function exec_func shall implement the functor/delegate functionality for a function phase type comp -

the component to execute the functionality upon phase - the phase schedule that originated this phase call.

11.1.4.2 exec_process (exec_task†)

virtual void exec_process(uvm_component* comp, uvm_phase* phase);

The member function exec_process shall implement the functor/delegate functionality for a task phase type comp -

the component to execute the functionality upon phase - the phase schedule that originated this phase call.

Page 153 UVM-SystemC Language Reference Manual – DRAFT

NOTEThe member function was called exec_task in UVM in SystemVerilog, but has been renamed in line with SystemC

processes.

11.1.5 Schedule

11.1.5.1 add

void add(uvm_phase* phase,

 uvm_phase* with_phase = NULL,

 uvm_phase* after_phase = NULL,

 uvm_phase* before_phase = NULL);

The member function add shall build a schedule structure, inserting phase by phase, specifying linkage. Phases can

be added anywhere, in series or parallel with existing nodes. The argument phase is the handle of a singleton derived

phase implementation containing actual functor. By default the new phase shall be appended to the schedule. When

argument with_phase is passed, the new phase shall be added in parallel to the actual phase. When argument

after_phase is passed, the new phase shall be added as successor to the actual phase. When the argument

before_phase is passed, the new phase shall be added as predecessor to the actual phase.

11.1.5.2 get_parent

uvm_phase* get_parent() const;

The member function get_parent shall return the parent schedule node, if any, for hierarchical graph traversal.

11.1.5.3 get_full_name

virtual const std::string get_full_name() const;

The member function get_full_name shall return the full path from the enclosing domain down to this node. The

singleton phase implementations have no hierarchy.

11.1.5.4 get_schedule

uvm_phase* get_schedule(bool hier = false) const;

The member function get_schedule shall return the topmost parent schedule node, if any, for hierarchical graph

traversal.

11.1.5.5 get_schedule_name

std::string get_schedule_name(bool hier = false) const;

The member function get_schedule_name shall return the schedule name associated with this phase node.

11.1.5.6 get_domain

uvm_domain* get_domain() const;

The member function get_domain shall return the enclosing domain.

UVM-SystemC Language Reference Manual – DRAFT Page 154

11.1.5.7 get_domain_name

std::string get_domain_name() const;

The member function get_domain_name shall returns the domain name associated with this phase node.

11.1.5.8 get_imp

uvm_phase* get_imp() const;

The member function get_imp shall return the phase implementation for this node. It shall return NULL if this

phase type is not a UVM_PHASE_LEAF_NODE.

11.1.6 Synchronization

11.1.6.1 get_objection

uvm_objection* get_objection() const;

The member function get_objection shall return the object of class uvm_objection that gates the termination of the

phase.

11.1.6.2 raise_objection

virtual void raise_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

The member function raise_objection shall return the object of class uvm_objection that gates the termination of

the phase.

11.1.6.3 drop_objection

virtual void drop_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

The member function drop_objection shall drop an objection to ending a phase. The drop is expected to be matched

with an earlier raise.

11.1.6.4 sync

void sync(uvm_domain* target,

 uvm_phase* phase = NULL,

 uvm_phase* with_phase = NULL);

The member function sync shall synchronize two domains, fully or partially. The argument target is a handle of the

target domain to synchronize this one to. The optional argument phase is the phase in this domain to synchronize

Page 155 UVM-SystemC Language Reference Manual – DRAFT

with; otherwise synchronize to all. The optional argument with_phase is the target-domain phase to synchronize

with; otherwise use phase in the target domain.

11.1.6.5 unsync

void unsync(uvm_domain* target,

 uvm_phase* phase = NULL,

 uvm_phase* with_phase = NULL);

The member function unsync shall remove the synchronization between two domains, fully or partially. The

argument target is a handle of the target domain to remove synchronize from. The optional argument phase is the

phase in this domain to un-synchronize with; otherwise un-synchronize to all. The optional argument with_phase is

the target-domain phase to un-synchronize with; otherwise use phase in the target domain.

11.1.6.6 wait_for_state

void wait_for_state(uvm_phase_state state, uvm_wait_op op = UVM_EQ);

The member function wait_for_state shall wait until this phase compares with the given state and op operand. For

UVM_EQ and UVM_NE operands, several uvm_phase_states can be supplied by their enum constants, in which

case the caller will wait until the phase state is any of UVM_EQ or none of UVM_NE the provided states.

11.1.7 Jumping

11.1.7.1 jump

void jump(const uvm_phase* phase);

The member function jump shall jump to a specified phase. If the destination phase is within the current phase

schedule, a simple local jump takes place. If the jump-to phase is outside of the current schedule then the jump

affects other schedules which share the phase.

11.1.7.2 get_jump_target

uvm_phase* get_jump_target() const;

The member function get_jump_target shall return the handle to the target phase of the current jump, or NULL if

no jump is in progress. This member function shall only be used during the phase_ended callback.

11.2 uvm_domain

The class uvm_domain shall provide a phasing schedule node representing an independent branch of the schedule.

11.2.1 Class definition

namespace uvm {

 class uvm_domain : public uvm_phase

UVM-SystemC Language Reference Manual – DRAFT Page 156

 {

 public:

 explicit uvm_domain(const std::string& name);

 static std::map< std::string, uvm_domain* > get_domains();

 static uvm_phase* get_uvm_schedule();

 static uvm_domain* get_common_domain();

 static void add_uvm_phases(uvm_phase* schedule);

 static uvm_domain* get_uvm_domain();

 }; // class uvm_domain

} // namespace uvm

11.2.2 Constructor

explicit uvm_domain(const std::string& name);

The constructor shall create a new instance of a phase domain with the name passed as argument.

11.2.3 Member functions

11.2.3.1 get_domains

static std::map< std::string, uvm_domain* > get_domains();

The member function get_domains shall provide a list of all domains in the provided domains argument.

11.2.3.2 get_uvm_schedule

static uvm_phase* get_uvm_schedule();

The member function get_uvm_schedule shall return the “UVM” schedule, which consists of the run-time phases

that all components execute when participating in the “UVM” domain.

11.2.3.3 get_common_domain

static uvm_domain* get_common_domain();

The member function get_common_domain shall return the “common” domain, which consists of the common

phases that all components execute in sync with each other. Phases in the “common” domain are build, connect,

end_of_elaboration, start_of_simulation, run, extract, check, report, and final.

11.2.3.4 get_uvm_phases

static void add_uvm_phases(uvm_phase* schedule);

Page 157 UVM-SystemC Language Reference Manual – DRAFT

The member function add_uvm_phases shall append to the given schedule the built-in UVM phases.

11.2.3.5 get_uvm_domain

static uvm_domain* get_uvm_domain();

The member function get_uvm_domain shall return the handle to the singleton uvm domain.

11.3 uvm_bottomup_phase

The class uvm_bottomup_phase shall provide the base class for function phases that operate bottom-up. The

member function execute is called for each component. This is the default traversal so is included only for naming.

The bottom-up phase completes when the member function execute has been called and returned on all applicable

components in the hierarchy.

11.3.1 Class definition

namespace uvm {

 class uvm_bottomup_phase : public uvm_phase

 {

 public:

 explicit uvm_bottomup_phase(const std::string& name);

 virtual void traverse(uvm_component* comp,

 uvm_phase* phase,

 uvm_phase_state state);

 virtual void execute(uvm_component* comp,

 uvm_phase* phase);

 }; // class uvm_bottomup_phase

} // namespace uvm

11.3.2 Constructor

explicit uvm_bottomup_phase(const std::string& name);

The constructor shall create a new instance of a bottom-up phase using the name passed as argument.

UVM-SystemC Language Reference Manual – DRAFT Page 158

11.3.3 Member functions

11.3.3.1 traverse

virtual void traverse(uvm_component* comp,

 uvm_phase* phase,

 uvm_phase_state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function

execute for each component.

11.3.3.2 execute

virtual void execute(uvm_component* comp,

 uvm_phase* phase);

The member function execute shall execute the bottom-up phase phase for the component comp.

11.4 uvm_topdown_phase

The class uvm_topdown_phase shall provide the base class for function phases that operate top-down. The member

function execute is called for each component. This is the default traversal so is included only for naming. The top-

down phase completes when the member function execute has been called and returned on all applicable

components in the hierarchy.

11.4.1 Class definition

namespace uvm {

 class uvm_topdown_phase : public uvm_phase

 {

 public:

 explicit uvm_topdown_phase(const std::string& name);

 virtual void traverse(uvm_component* comp,

 uvm_phase* phase,

 uvm_phase_state state);

 virtual void execute(uvm_component* comp,

 uvm_phase* phase);

 }; // class uvm_topdown_phase

Page 159 UVM-SystemC Language Reference Manual – DRAFT

} // namespace uvm

11.4.2 Constructor

explicit uvm_topdown_phase(const std::string& name);

The constructor shall create a new instance of a top-down phase using the name name passed as argument.

11.4.3 Member functions

11.4.3.1 traverse

virtual void traverse(uvm_component* comp,

 uvm_phase* phase,

 uvm_phase_state state);

The member function traverse shall traverse the component tree in top-down order, calling member function

execute for each component.

11.4.3.2 execute

virtual void execute(uvm_component* comp,

 uvm_phase* phase);

The member function execute shall execute the top-down phase phase for the component comp.

11.5 uvm_process_phase (uvm_task_phase†)

The class uvm_process_phase shall provide the base class for all process-oriented phases. It is responsible to

create spawned processes as part of the execution of the callback uvm_phase::exec_process for each component in

the hierarchy. The completion of the execution of this callback does not imply, nor is it required for, the end of

phase. Once the phase completes, any remaining spawned processes caused by executing

uvm_phase::exec_process are forcibly and immediately killed. By default, the way for a process phase to extend

over time is if there is at least one component that raises an objection.

11.5.1 Class definition

namespace uvm {

 class uvm_process_phase : public uvm_phase

 {

 public:

 explicit uvm_process_phase(const std::string& name);

 virtual void traverse(uvm_component* comp,

UVM-SystemC Language Reference Manual – DRAFT Page 160

 uvm_phase* phase,

 uvm_phase_state state);

 virtual void execute(uvm_component* comp,

 uvm_phase* phase);

 }; // class uvm_process_phase

} // namespace uvm

11.5.2 Member functions

11.5.2.1 traverse

virtual void traverse(uvm_component* comp,

 uvm_phase* phase,

 uvm_phase_state state);

The member function traverse shall traverse the component tree in bottom-up order, calling member function

execute for each component.

NOTEThe actual order for process-based phases does not really matter, as each component process is executed in a separate

process whose starting order is not deterministic.

11.5.2.2 execute

virtual void execute(uvm_component* comp,

 uvm_phase* phase);

The member function execute shall spawn a process of phase phase for the component comp.

11.6 uvm_objection

The class uvm_objection shall provide a facility for coordinating status information between two or more

participating components, objects, and even module-based IP.

11.6.1 Class definition

namespace uvm {

 class uvm_objection : public uvm_object

 {

 public:

 // Constructors

Page 161 UVM-SystemC Language Reference Manual – DRAFT

 uvm_objection();

 uvm_objection(const std::string& name);

 // Group: Objection control

 virtual void clear(uvm_object* obj = NULL);

 bool trace_mode(int mode = -1);

 virtual void raise_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

 virtual void drop_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

 void set_drain_time(uvm_object* obj = NULL,

 const sc_core::sc_time& drain = sc_core::SC_ZERO_TIME);

 // Group: Callback hooks

 virtual void raised(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 virtual void dropped(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 virtual void all_dropped(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

 // Group: Objection status

 void get_objectors(std::vector<uvm_object*>& objlist) const;

 void wait_for(uvm_objection_event objt_event,

UVM-SystemC Language Reference Manual – DRAFT Page 162

 uvm_object* obj = NULL);

 int get_objection_count(uvm_object* obj = NULL) const;

 int get_objection_total(uvm_object* obj = NULL) const;

 const sc_core::sc_time get_drain_time(uvm_object* obj = NULL) const;

 void display_objections(uvm_object* obj = NULL,

 bool show_header = true) const;

 }; // class uvm_objection

} // namespace uvm

11.6.2 Constructor

uvm_objection();

uvm_objection(const std::string& name);

The constructor shall create a new objection instance with name name, if specified.

11.6.3 Objection control

11.6.3.1 clear

virtual void clear(uvm_object* obj = NULL);

The member function clear shall clear the objection state immediately. All counts are cleared and any processes that

called wait_for(UVM_ALL_DROPPED, uvm_top) are released An application should pass ‘this’ to the obj

argument for record keeping. Any configured drain times are not affected.

11.6.3.2 trace_mode

bool trace_mode(int mode = -1);

The member function trace_mode shall set or get the trace mode for the objection object. If no argument is

specified (or an argument other than 0 or 1) the current trace mode is unaffected. A trace_mode of 0 turns tracing

off. A trace mode of 1 turns tracing on. The return value is the mode prior to being reset.

11.6.3.3 raise_objection

virtual void raise_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

Page 163 UVM-SystemC Language Reference Manual – DRAFT

The member function raise_objection shall increase the number of objections for the source object by count, which

defaults to 1. The object is usually the current (‘this’) handle of the caller. If an object is not specified or NULL, the

implicit top-level component, uvm_root, is chosen.

Raising an objection shall cause the following.

 The source and total objection counts for object are increased by count.

 The member function raised is called, which calls the member function uvm_component::raised for all of

the components up the hierarchy.

The description is a string that marks a specific objection and is used in tracing or debug.

11.6.3.4 drop_objection

virtual void drop_objection(uvm_object* obj,

 const std::string& description = "",

 int count = 1);

The member function drop_objection shall decrease the number of objections for the source object by count, which

defaults to 1. The object is usually the current handle (‘this’) of the caller. If object is not specified or NULL, the

implicit top-level component, uvm_root, is chosen.

Dropping an objection shall cause the following:

 The source and total objection counts for object are decreased by count. It shall be an error to drop the

objection count for object below zero.

 The member function dropped is called, which calls the member function uvm_component::dropped for

all of the components up the hierarchy.

If the total objection count has not reached zero for the object, then the drop is propagated up the object hierarchy as

with raise_objection. Then, each object in the hierarchy will have updated their source counts--objections that they

originated--and total counts--the total number of objections by them and all their descendants.

If the total objection count reaches zero, propagation up the hierarchy is deferred until a configurable drain-time has

passed and the uvm_component::all_dropped callback for the current hierarchy level has returned.

For each instance up the hierarchy from the source caller, a process is forked in a non-blocking fashion, allowing the

drop call to return. The forked process then does the following:

 If a drain time was set for the given object, the process waits for that amount of time.

 The objection’s virtual member function all_dropped is called, which calls the

uvm_component::all_dropped method (if object is a component).

 The process then waits for the all_dropped callback to complete.

 After the drain time has elapsed and the all_dropped callback has completed, propagation of the dropped

objection to the parent proceeds as described in raise_objection, except as described below.

If a new objection for this object or any of its descendents is raised during the drain time or during execution of the

all_dropped callback at any point, the hierarchical chain described above is terminated and the dropped callback

does not go up the hierarchy. The raised objection will propagate up the hierarchy, but the number of raised

propagated up is reduced by the number of drops that were pending waiting for the all_dropped/drain time

UVM-SystemC Language Reference Manual – DRAFT Page 164

completion. Thus, if exactly one objection caused the count to go to zero, and during the drain exactly one new

objection comes in, no raises or drops are propagated up the hierarchy,

As an optimization, if the object has no drain-time set and no registered callbacks, the forked process can be skipped

and propagation proceeds immediately to the parent as described.

11.6.3.5 set_drain_time

void set_drain_time(uvm_object* obj = NULL,

 const sc_core::sc_time& drain = sc_core::SC_ZERO_TIME);

The member function set_drain_time shall set the drain time on the given object to drain. The drain time is the

amount of time to wait once all objections have been dropped before calling the all_dropped callback and

propagating the objection to the parent. If a new objection for this object or any of its descendents is raised during

the drain time or during execution of the all_dropped callbacks, the drain_time/all_dropped execution is terminated.

11.6.4 Callback hooks

11.6.4.1 raised

virtual void raised(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

The member function raised shall be called when a raise_objection has reached obj. The default implementation

shall call uvm_component::raised (see 7.1.7.1).

11.6.4.2 dropped

virtual void dropped(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

The member function dropped shall be called when a drop_objection has reached obj. The default implementation

shall call uvm_component::dropped (see 7.1.7.2).

11.6.4.3 all_dropped

virtual void all_dropped(uvm_object* obj,

 uvm_object* source_obj,

 const std::string& description,

 int count);

Page 165 UVM-SystemC Language Reference Manual – DRAFT

The member function all_dropped shall be called when a drop_objection has reached obj, and the total count for

obj goes to zero. This callback is executed after the drain time associated with obj. The default implementation shall

call uvm_component::all_dropped (see 7.1.7.3).

11.6.5 Objections status

11.6.5.1 get_objectors

void get_objectors(std::vector<uvm_object*>& objlist) const;

The member function get_objectors shall return the current list of objecting objects (objects that raised an objection

but have not dropped it).

11.6.5.2 wait_for

void wait_for(uvm_objection_event objt_event,

 uvm_object* obj = NULL);

The member function wait_for shall wait for the raised, dropped, or all_dropped event to occur in the given object

obj. The member function returns after all corresponding callbacks for that event have been executed.

11.6.5.3 get_objection_count

int get_objection_count(uvm_object* obj = NULL) const;

The member function get_objection_count shall return the current number of objections raised by the given object

obj.

11.6.5.4 get_objection_total

int get_objection_total(uvm_object* obj = NULL) const;

The member function get_objection_total shall return the current number of objections raised by the given object

obj and all descendants.

11.6.5.5 get_drain_time

const sc_core::sc_time get_drain_time(uvm_object* obj = NULL) const;

The member function get_drain_time shall return the current drain time set for the given object obj. The default

drain time shall be set to sc_core::SC_ZERO_TIME.

11.6.5.6 display_objections

void display_objections(uvm_object* obj = NULL,

 bool show_header = true) const;

The member function display_objections shall display objection information about the given object obj. If object is

not specified or NULL, the implicit top-level component, uvm_root, is chosen. The argument show_header allows

control of whether a header is output.

UVM-SystemC Language Reference Manual – DRAFT Page 166

11.7 uvm_callback

The class uvm_callback shall provide the base class for user-defined callback classes. Typically, the component

developer defines an application-specific callback class that extends from this class. In it, he defines one or more

virtual member functions, called a callback interface, that represent the hooks available for user override.

The member functions intended for optional override should not be declared pure virtual. Usually, all the callback

member functions are defined with empty implementations so users have the option of overriding any or all of them.

The prototypes for each hook member function are completely application specific with no restrictions.

11.7.1 Class definition

namespace uvm {

 class uvm_callback : public uvm_object

 {

 public:

 uvm_callback(const std::string& name = "uvm_callback");

 bool callback_mode(int on = -1);

 bool is_enabled();

 virtual const std::string get_type_name() const;

 }; // class uvm_callback

} // namespace uvm

11.7.1.1 Constructor

uvm_callback(const std::string& name = "uvm_callback");

The constructor shall create a new object of type uvm_callback, giving it an optional name.

11.7.2 Member functions

11.7.2.1 callback_mode

bool callback_mode(int on = -1);

The member function callback_mode shall enable or disable callbacks. If argument on is set 1, callbacks are

enabled. If argument on is set 0, callbacks are disabled.

11.7.2.2 is_enabled

bool is_enabled();

The member function is_enabled shall return 1 if the callback is enabled, otherwise it shall return 0.

Page 167 UVM-SystemC Language Reference Manual – DRAFT

11.7.2.3 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the type name of this callback object.

11.8 uvm_callback_iter

The class uvm_callback_iter is an iterator class for iterating over callback queues of a specific callback type.

11.8.1 Class definition

namespace uvm {

 template < typename T = uvm_object, typename CB = uvm_callback>

 class uvm_callback_iter

 {

 public:

 uvm_callback_iter(T* obj);

 CB* first();

 CB* last();

 CB* next();

 CB* prev();

 CB* get_cb();

 }; // class uvm_callback

} // namespace uvm

11.8.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB will be registered. This

object must be a derivative of class uvm_object.

11.8.3 Template parameter CB

The template parameter T specifies the base callback type that will be managed by this callback class. The template

parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

11.8.4 Constructor

uvm_callback_iter(T* obj);

The constructor shall create a new callback iterator object. It is required that the object context be provided.

UVM-SystemC Language Reference Manual – DRAFT Page 168

11.8.5 Member functions

11.8.5.1 first

CB* first();

The member function first shall return the first valid (enabled) callback of the callback type (or a derivative) that is

in the queue of the context object. If the queue is empty, then NULL is returned.

11.8.5.2 last

CB* last();

The member function last shall return the last valid (enabled) callback of the callback type (or a derivative) that is in

the queue of the context object. If the queue is empty, then NULL is returned.

11.8.5.3 next

CB* next();

The member function next shall return the next valid (enabled) callback of the callback type (or a derivative) that is

in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is returned.

11.8.5.4 prev

CB* prev();

The member function prev shall return the previous valid (enabled) callback of the callback type (or a derivative)

that is in the queue of the context object. If there are no more valid callbacks in the queue, then NULL is returned.

11.8.5.5 get_cb

CB* get_cb();

The member function get_cb shall return the last callback accessed via the call first or next.

11.9 uvm_callbacks

The class uvm_callbacks shall provide a base class for implementing callbacks, which are typically used to modify

or augment component behavior without changing the component class. To work effectively, the developer of the

component class defines a set of “hook” methods that enable users to customize certain behaviors of the component

in a manner that is controlled by the component developer. The integrity of the component’s overall behavior is

intact, while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined callback interface

implementation as well as the object type associated with the callback. The object type-callback type pair are

associated together using the macro UVM_REGISTER_CB to define a valid pairing; valid pairings are checked

when a user attempts to add a callback to an object (see 13.4.2).

To provide the most flexibility for end-user customization and reuse, it is recommended that the component

developer also define a corresponding set of virtual method hooks in the component itself. This affords users the

Page 169 UVM-SystemC Language Reference Manual – DRAFT

ability to customize via inheritance/factory overrides as well as callback object registration. The implementation of

each virtual method would provide the default traversal algorithm for the particular callback being called. Being

virtual, an application can define subtypes that override the default algorithm, perform tasks before and/or after

calling the base class to execute any registered callbacks, or to not call the base implementation, effectively

disabling that particular hook.

11.9.1 Class definition

namespace uvm {

 template <typename T = uvm_object, typename CB = uvm_callback>

 class uvm_callbacks : public uvm_typed_callbacks<T>

 {

 public:

 uvm_callbacks();

 // Group: Add/delete inteface

 static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM_APPEND);

 static void add_by_name(const std::string& name,

 uvm_callback* cb,

 uvm_component* root,

 uvm_apprepend ordering = UVM_APPEND);

 static void do_delete(T* obj, uvm_callback* cb);

 static void delete_by_name(const std::string& name,

 uvm_callback* cb,

 uvm_component* root);

 // Group: Iterator Interface

 static CB* get_first(int& itr, T* obj);

 static CB* get_last(int& itr, T* obj);

 static CB* get_next(int& itr, T* obj);

 static CB* get_prev(int& itr, T* obj);

 // Group: Debug

 static void display(T* obj = NULL);

UVM-SystemC Language Reference Manual – DRAFT Page 170

 }; // class uvm_callbacks

} // namespace uvm

11.9.2 Template parameter T

The template parameter T specifies the base object type with which the callback objects CB will be registered. This

object must be a derivative of class uvm_object.

11.9.3 Template parameter CB

The template parameter CB specifies the base callback type that will be managed by this callback class.The template

parameter CB is optional. If not specified, the parameter is assigned the type uvm_callback.

11.9.4 Constructor

uvm_callbacks();

The constructor shall create a new object of type uvm_callbacks<T, CB>.

11.9.5 Add/delete interface

11.9.5.1 add

static void add(T* obj, uvm_callback* cb, uvm_apprepend ordering = UVM_APPEND);

The member function add shall register the given callback object, cb, with the given handle obj. The object handle

can be NULL, which allows registration of callbacks without an object context. If ordering is UVM_APPEND

(default), the callback will be executed after previously added callbacks, else the callback will be executed ahead of

previously added callbacks. The argument cb is the callback handle; it must be non-NULL, and if the callback has

already been added to the object instance then a warning shall be issued.

11.9.5.2 add_by_name

static void add_by_name(const std::string& name,

 uvm_callback* cb,

 uvm_component* root,

 uvm_apprepend ordering = UVM_APPEND);

The member function add_by_name shall register the given callback object, cb, with one or more components of

type uvm_component. The components must already exist and must be type T or a derivative. As with add the CB

parameter is optional. Argument root specifies the location in the component hierarchy to start the search for name.

See uvm_root::find_all (see 4.3.3.2) for more details on searching by name.

11.9.5.3 do_delete (delete†)

 static void do_delete(T* obj, uvm_callback* cb);

Page 171 UVM-SystemC Language Reference Manual – DRAFT

The member function do_delete shall delete the given callback object, cb, from the queue associated with the given

object handle obj. The object handle can be NULL, which allows de-registration of callbacks without an object

context. The argument cb is the callback handle; it must be non-NULL, and if the callback has already been

removed from the object instance then a warning is issued.

11.9.5.4 delete_by_name

static void delete_by_name(const std::string& name,

 uvm_callback* cb,

 uvm_component* root);

The member function delete_by_name shall remove the given callback object, cb, associated with one or more

uvm_component callback queues. Argument root specifies the location in the component hierarchy to start the

search for name. See uvm_root::find_all for more details on searching by name (see 4.3.3.2).

11.9.6 Iterator interfaces

This set of member functions shall provide an iterator interface for callback queues. A facade class,

uvm_callback_iter is also available, and is the generally preferred way to iterate over callback queues. (See 11.8).

11.9.6.1 get_first

static CB* get_first(int& itr, T* obj);

The member function get_first shall return the first enabled callback of type CB which resides in the queue for

object obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator; it will be

updated with a value that can be supplied to get_next to get the next callback object. If the queue is empty, then

NULL is returned. The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

11.9.6.2 get_last

static CB* get_last(int& itr, T* obj);

The member function get_last shall return the last enabled callback of type CB which resides in the queue for object

obj. If object obj is NULL, then the typewide queue for T is searched. Argument itr is the iterator; it will be updated

with a value that can be supplied to get_prev to get the previous callback object. If the queue is empty then NULL is

returned. The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

11.9.6.3 get_next

static CB* get_next(int& itr, T* obj);

The member function get_next shall return the next enabled callback of type CB which resides in the queue for

object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T is searched.

The iterator will be updated with a value that can be supplied to get_next to get the next callback object. If no more

callbacks exist in the queue, then NULL is returned. The member function get_next will continue to return NULL in

this case until member function get_first or get_last has been used to reset the iterator. The iterator class

uvm_callback_iter may be used as an alternative, simplified, iterator interface.

UVM-SystemC Language Reference Manual – DRAFT Page 172

11.9.6.4 get_prev

static CB* get_prev(int& itr, T* obj);

The member function get_prev shall return the previous enabled callback of type CB which resides in the queue for

object obj, using iterator itr as the starting point. If object obj is NULL, then the typewide queue for T is searched.

The iterator will be updated with a value that can be supplied to member function get_prev to get the previous

callback object. If no more callbacks exist in the queue, then NULL is returned. The member function get_prev will

continue to return NULL in this case until member function get_first or get_last has been used to reset the iterator.

The iterator class uvm_callback_iter may be used as an alternative, simplified, iterator interface.

11.9.7 Debug

11.9.7.1 display

static void display(T* obj = NULL);

The member function display shall display callback information for object obj. If object obj is NULL, then it

displays callback information for all objects of type T, including typewide callbacks.

Page 173 UVM-SystemC Language Reference Manual – DRAFT

12. Reporting classes

The UVM-SystemC reporting classes provide an additional facility for issuing reports with consistent formatting.

Users can configure what actions to take and what files to send output to based on report severity, ID, or both

severity and ID. Users can also filter messages based on their verbosity settings. It supports a component-level

reporting mechanism by setting the severity level on a per-instance basis. In addition, some convenience macros are

available for the reporting of information, warnings, errors, or fatal errors.

SystemC has already an extensive and highly configurable message-reporting mechanism using the

sc_core::sc_report_handler class and sc_core::sc_report objects. An application may also use this native SystemC

global-level reporting mechanism where appropriate.

The following reporting classes are defined:

 uvm_report_object: The base class which provides the interface to the UVM reporting mechanism.

 uvm_report_handler: The class which acting as implementation for the member functions defined in the

class uvm_report_object.

 uvm_report_server: The class acting as global server that processes all of the reports generated by the

class uvm_report_handler.

 uvm_report_catcher: The class which captures and counts all reports issued by the class

uvm_report_server.

The primary interface to the UVM reporting facility is the class uvm_report_object from which class

uvm_component is derived. The class uvm_report_object delegates most tasks to its internal

uvm_report_handler. If the report handler determines the report is not filtered based the configured verbosity

setting, it sends the report to the central uvm_report_server for formatting and processing.

12.1 uvm_report_object

The class uvm_report_object shall provide the primary interface to the UVM reporting facility. Through this

interface, components issue the various messages that occur during simulation. An application can configure what

actions are taken and what file(s) are output for individual messages from a particular component or for all messages

from all components in the environment. Defaults are applied where there is no explicit configuration.

A report consists of an id string, severity, verbosity level, and the textual message itself. They may optionally

include the filename and line number from which the message came. If the verbosity level of a report is greater than

the configured maximum verbosity level of its report object, it is ignored. If a report passes the verbosity filter in

effect, the report’s action is determined. If the action includes output to a file, the configured file descriptor(s) are

determined.

 Actions can be set for (in increasing priority) severity, id, and (severity, id) pair. They include output to the

screen or log file (UVM_DISPLAY or UVM_LOG respectively), whether the message counters should be

incremented (UVM_COUNT), whether a simulation should be finished (UVM_EXIT) or stopped

(UVM_STOP). The action can also specify if a specific callback should be called as soon as the reporting

occurs (UVM_CALL_HOOK).

Actions are of type uvm_action and can take the value UVM_NO_ACTION, or it can be a bitwise OR of

any combination of UVM_DISPLAY, UVM_LOG, UVM_COUNT, UVM_STOP, UVM_EXIT, and

UVM_CALL_HOOK (see 15.3.1).

UVM-SystemC Language Reference Manual – DRAFT Page 174

 Default actions: The following provides the default actions assigned to each severity. These can be

overridden by any of the member function set_report_id_action.

Severity Default action(s)

UVM_INFO UVM_DISPLAY

UVM_WARNING UVM_DISPLAY, UVM_COUNT

UVM_ERROR UVM_DISPLAY, UVM_COUNT

UVM_FATAL UVM_DISPLAY, UVM_COUNT, UVM_EXIT

 File descriptors: These can be set by (in increasing priority) default, severity level, an id, or (severity, id)

pair. File descriptors are of type UVM_FILE. They may refer to more than one file. It is the application’s

responsibility to open and close the files.

 Default file handle: The default file handle is 0, which means that reports are not sent to a file even if a

UVM_LOG attribute is set in the action associated with the report. This can be overridden by the member

function set_report_default_file, set_report_severity_file, set_report_id_file or

set_report_severity_id_file. As soon as the file descriptor is set and the action UVM_LOG is set, the

report will be sent to its associated file descriptor.

12.1.1 Class definition

namespace uvm {

 class uvm_report_object : public uvm_object

 {

 public:

 // Constructors

 uvm_report_object();

 explicit uvm_report_object(const std::string& name);

 // Group: Reporting

 bool uvm_report_enabled(int verbosity,

 uvm_severity_type severity = UVM_INFO,

 const std::string& id = "");

 virtual void uvm_report_info(const std::string& id,

 const std::string& message,

 int verbosity = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0) const;

Page 175 UVM-SystemC Language Reference Manual – DRAFT

 virtual void uvm_report_warning(const std::string& id,

 const std::string& message,

 int verbosity = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0) const;

 virtual void uvm_report_error(const std::string& id,

 const std::string& message,

 int verbosity = UVM_LOW,

 const std::string& filename = "",

 int line = 0) const;

 virtual void uvm_report_fatal(const std::string& id,

 const std::string& message,

 int verbosity = UVM_NONE,

 const std::string& filename = "",

 int line = 0) const;

 // Group: Verbosilty Configuration

 int get_report_verbosity_level(uvm_severity_type severity = UVM_INFO,

 const std::string& id = "") const;

 void set_report_verbosity_level(int verbosity_level);

 void set_report_id_verbosity(const std::string& id, int verbosity);

 void set_report_severity_id_verbosity(uvm_severity severity,

 const std::string& id,

 int verbosity);

 // Action configuration

 int get_report_action(uvm_severity severity,

 const std::string& id) const;

 void set_report_severity_action(uvm_severity severity,

 uvm_action action);

 void set_report_id_action(const std::string& id,

 uvm_action action);

 void set_report_severity_id_action(uvm_severity severity,

 const std::string& id,

 uvm_action action);

UVM-SystemC Language Reference Manual – DRAFT Page 176

 // File configuration

 UVM_FILE get_report_file_handle(uvm_severity severity,

 const std::string& id) const;

 void set_report_default_file(UVM_FILE file);

 void set_report_id_file(const std::string& id, UVM_FILE file);

 void set_report_severity_file(uvm_severity severity, UVM_FILE file);

 void set_report_severity_id_file(uvm_severity severity,

 const std::string& id,

 UVM_FILE file);

 // Override Configuration

 void set_report_severity_override(uvm_severity cur_severity,

 uvm_severity new_severity);

 void set_report_severity_id_override(uvm_severity cur_severity,

 const std::string& id,

 uvm_severity new_severity);

 // Group: Report Handler Configuration

 void set_report_handler(uvm_report_handler* handler);

 uvm_report_handler* get_report_handler() const;

 void reset_report_handler();

 }; // class uvm_report_object

} // namespace uvm

12.1.2 Constructors

uvm_report_object();

explicit uvm_report_object(const std::string& name);

The constructors shall create a new report object with the given name. This member function shall also create a new

uvm_report_handler object to which most tasks are delegated.

12.1.3 Reporting

The member functions uvm_report_info, uvm_report_warning and uvm_report_fatal are the primary reporting

methods in UVM. They ensure a consistent output and central control over where output is directed and any actions

that result. All reporting member functions have the same arguments, although each has a different default

verbosity:

Page 177 UVM-SystemC Language Reference Manual – DRAFT

 id: a unique id of type std::string for the report or report group that can be used for identification and

therefore targeted filtering. An application can configure an individual report’s actions and output file(s)

using this id.

 message: the message body, preformatted to a single string of type std::string.

 verbosity: the verbosity of the message, indicating its relative importance. The verbosity shall be specified

as an enumeration of type uvm_verbosity. If the equivalent verbosity value is less than or equal to the

effective verbosity level (see set_report_verbosity_level), then the report is issued, subject to the

configured action and file descriptor settings. Verbosity is ignored for warnings, errors, and fatals.

However, if a warning, error or fatal is demoted to an info message using the uvm_report_catcher, then

the verbosity is taken into account.

The predefined uvm_verbosity values are UVM_NONE, UVM_LOW, UVM_MEDIUM, UVM_HIGH,

and UVM_FULL.

 filename (optional): The file from which the report was issued. An application can use the predefined

macros __FILE__ and __LINE__. If specified, it is displayed in the output.

 line (optional): The location from which the report was issued. An application can use the predefined macro

__LINE__. If specified, it is displayed in the output.

12.1.3.1 uvm_report_enabled

bool uvm_report_enabled(int verbosity,

 uvm_severity_type severity = UVM_INFO,

 const std::string& id = "");

The member function uvm_report_enabled shall return true if the configured verbosity for this severity/id is

greater than or equal to the given argument verbosity; otherwise it shall return false.

12.1.3.2 uvm_report_info

virtual void uvm_report_info(const std::string& id,

 const std::string& message,

 int verbosity = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0) const;

The member function uvm_report_info shall issue an info message using the current messages report object.

12.1.3.3 uvm_report_warning

virtual void uvm_report_warning(const std::string& id,

 const std::string& message,

 int verbosity = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0) const;

UVM-SystemC Language Reference Manual – DRAFT Page 178

The member function uvm_report_warning shall issue a warning message using the current messages report

object.

12.1.3.4 uvm_report_error

virtual void uvm_report_error(const std::string& id,

 const std::string& message,

 int verbosity = UVM_LOW,

 const std::string& filename = "",

 int line = 0) const;

The member function uvm_report_error shall issue an error message using the current messages report object.

12.1.3.5 uvm_report_fatal

virtual void uvm_report_fatal(const std::string& id,

 const std::string& message,

 int verbosity = UVM_NONE,

 const std::string& filename = "",

 int line = 0) const;

The member function uvm_report_fatal shall issue a fatal message using the current messages report object.

12.1.4 Verbosity configuration

12.1.4.1 get_report_verbosity_level

int get_report_verbosity_level(uvm_severity_type severity = UVM_INFO,

 const std::string& id = "") const;

The member function get_report_verbosity_level shall get the verbosity level in effect for this object. Reports

issued with verbosity greater than this will be filtered out. The severity and tag arguments check if the verbosity

level has been modified for specific severity/tag combinations.

12.1.4.2 set_report_verbosity_level

void set_report_verbosity_level(int verbosity_level);

The member function set_report_verbosity_level shall set the maximum verbosity level for reports for this

component. Any report from this component whose verbosity exceeds this maximum will be ignored.

12.1.4.3 set_report_id_verbosity

void set_report_id_verbosity(const std::string& id, int verbosity);

The member function set_report_id_verbosity shall associate the specified verbosity with reports of the given id. A

verbosity associated with a particular id takes precedence over a verbosity associated with a severity.

Page 179 UVM-SystemC Language Reference Manual – DRAFT

12.1.4.4 set_report_severity_id_verbosity

void set_report_severity_id_verbosity(uvm_severity severity,

 const std::string& id,

 int verbosity);

The member function set_report_severity_id_verbosity shall associate the specified verbosity with reports of the

given severity-id pair. A verbosity associated with a particular severity-id pair takes precedence over an verbosity

associated with id, which take precedence over an verbosity associated with a severity.

12.1.5 Action configuration

12.1.5.1 get_report_action

int get_report_action(uvm_severity severity,

 const std::string& id) const;

The member function get_report_action shall get the action associated with reports having the given severity and

id.

12.1.5.2 set_report_severity_action

void set_report_severity_action(uvm_severity severity,

 uvm_action action);

The member function set_report_severity_action shall associate the specified action or actions with the given

severity. An action associated with a particular severity-id pair or id, using the member functions

set_report_severity_id_action or set_report_id_action respectively, shall take precedence over the association set

by this member function.

12.1.5.3 set_report_id_action

void set_report_id_action(const std::string& id,

 uvm_action action);

The member function set_report_id_action shall associate the specified action or actions with the given id. An

action associated with a particular severity-id pair, using the member functions set_report_severity_id_action,

shall take precedence over the association set by this member function.

12.1.5.4 set_report_severity_id_action

void set_report_severity_id_action(uvm_severity severity,

 const std::string& id,

 uvm_action action);

The member function set_report_severity_id_action shall associate the specified action or actions with the given

id. An action associated with a particular severity-id pair shall take precedence over an action associated with id,

which takes precedence over an action associated with a severity.

UVM-SystemC Language Reference Manual – DRAFT Page 180

12.1.6 File configuration

12.1.6.1 get_report_file_handle

UVM_FILE get_report_file_handle(uvm_severity severity,

 const std::string& id) const;

The member function get_report_file_handle shall get the file descriptor associated with reports having the given

severity and id.

12.1.6.2 set_report_default_file

void set_report_default_file(UVM_FILE file);

The member function set_report_default_file shall configure the report handler to direct some or all of its output to

the default file descriptor of type UVM_FILE. A file associated with a particular severity-id pair shall take

precedence over a FILE associated with id, which shall take precedence over a file associated with a severity, which

shall takes precedence over the association set by this member function.

12.1.6.3 set_report_id_file

void set_report_id_file(const std::string& id, UVM_FILE file);

The member function set_report_id_file shall configure the report handler to direct reports of the given id to the file

descriptor of type UVM_FILE. A file associated with a particular severity-id shall take precedence over the

association set by this member function.

12.1.6.4 set_report_severity_file

void set_report_severity_file(uvm_severity severity, UVM_FILE file);

The member function set_report_severity_file shall configure the report handler to direct reports of the given

severity to the file descriptor of type UVM_FILE. A file associated with a particular severity-id or associated with a

specific id, shall take precedence over the association set by this member function.

12.1.6.5 set_report_severity_id_file

void set_report_severity_id_file(uvm_severity severity,

 const std::string& id,

 UVM_FILE file);

The member function set_report_severity_id_file shall configure the report handler to direct reports of the given

severity-id pair to the given file descriptor of type UVM_FILE. A file associated with a particular severity-id pair

shall take precedence over a file associated with id, which shall take precedence over a file associated with a

severity, which takes precedence over the default file descriptor.

Page 181 UVM-SystemC Language Reference Manual – DRAFT

12.1.7 Override configuration

12.1.7.1 set_report_severity_override

void set_report_severity_override(uvm_severity cur_severity,

 uvm_severity new_severity);

The member function set_report_severity_override shall provide the ability to upgrade or downgrade a message in

terms of severity given severity. An upgrade or downgrade for a specific id, using member function

set_report_severity_id_override, shall take precedence over an upgrade or downgrade set by this member

function.

12.1.7.2 set_report_severity_id_override

void set_report_severity_id_override(uvm_severity cur_severity,

 const std::string& id,

 uvm_severity new_severity);

The member function set_report_severity_id_override shall provide the ability to upgrade or downgrade a

message in terms of severity given severity. An upgrade or downgrade for a specific id takes precedence over an

upgrade or downgrade associated with a severity.

12.1.8 Report handler configuration

12.1.8.1 set_report_handler

void set_report_handler(uvm_report_handler* handler);

The member function set_report_handler shall set the report handler, overwriting the default instance. This allows

more than one component to share the same report handler.

12.1.8.2 get_report_handler

uvm_report_handler* get_report_handler() const;

The member function get_report_handler shall return the underlying report handler to which most reporting tasks

are delegated.

12.1.8.3 reset_report_handler

void reset_report_handler();

The member function reset_report_handler shall reset the underlying report handler to its default settings. This

clears any settings made with the member functions set_report_id_verbosity_hier,

set_report_severity_id_verbosity_hier, set_report_severity_action_hier, set_report_id_action_hier,

set_report_severity_id_action_hier, set_report_default_file_hier, set_report_severity_file_hier,

set_report_id_file_hier, set_report_severity_id_file_hier and set_report_verbosity_level_hier (see 7.1.9).

UVM-SystemC Language Reference Manual – DRAFT Page 182

12.2 uvm_report_handler

The class uvm_report_handler is the class to which most methods in uvm_report_object delegate. It stores the

maximum verbosity, actions, and files that affect the way reports are handled.

The report handler is not intended for direct use. See uvm_report_object for information on the UVM reporting

mechanism.

The relationship between class uvm_report_object, which is a base class for uvm_component, and class

uvm_report_handler is typically one to one, but it can be many to one if several objects of type

uvm_report_object are configured to use the same uvm_report_handler.

See uvm_report_object::set_report_handler.

The relationship between an object of type uvm_report_handler and an object of type uvm_report_server is many

to one.

12.2.1 Class definition

namespace uvm {

 class uvm_report_handler

 {

 public:

 uvm_report_handler();

 int get_verbosity_level(uvm_severity severity = UVM_INFO,

 const std::string& id = "");

 uvm_action get_action(uvm_severity severity,

 const std::string& id);

 UVM_FILE get_file_handle(uvm_severity severity,

 const std::string& id);

 virtual void report(uvm_severity severity,

 const std::string& name,

 const std::string& id,

 const std::string& message,

 int verbosity_level = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0,

 uvm_report_object* client = NULL);

Page 183 UVM-SystemC Language Reference Manual – DRAFT

 std::string format_action(uvm_action action);

 }; // class uvm_report_handler

} // namespace uvm

12.2.2 Constructor

uvm_report_handler();

The constructor shall create and initialize a new handler object.

12.2.3 Member functions

12.2.3.1 get_verbosity_level

int get_verbosity_level(uvm_severity severity = UVM_INFO,

 const std::string& id = "");

The member function get_verbosity_level shall return the verbosity associated with the given severity and id.

First, if there is a verbosity associated with the pair (severity, id), return that. Else, if there is a verbosity associated

with the id, return that. Else, return the maximum verbosity setting.

12.2.3.2 get_action

uvm_action get_action(uvm_severity severity,

 const std::string& id);

The member function get_action shall return the action associated with the given severity and id. First, if there is an

action associated with the pair (severity, id), return that. Else, if there is an action associated with the id, return that.

Else, if there is an action associated with the severity, return that. Else, return the default action associated with the

severity.

12.2.3.3 get_file_handle

UVM_FILE get_file_handle(uvm_severity severity,

 const std::string& id);

The member function get_file_handle shall return the file descriptor UVM_FILE associated with the given severity

and id. First, if there is a file handle associated with the pair (severity, id), return that. Else, if there is a file handle

associated with the id, return that. Else, if there is an file handle associated with the severity, return that. Else, return

the default file handle.

12.2.3.4 report

virtual void report(uvm_severity severity,

UVM-SystemC Language Reference Manual – DRAFT Page 184

 const std::string& name,

 const std::string& id,

 const std::string& message,

 int verbosity_level = UVM_MEDIUM,

 const std::string& filename = "",

 int line = 0,

 uvm_report_object* client = NULL);

The member function report shall be used by the four core reporting methods, uvm_report_error,

uvm_report_info, uvm_report_warning, uvm_report_fatal, of class uvm_report_object.

12.2.3.5 format_action

std::string format_action(uvm_action action);

The member function format_action shall return a string representation of the action, e.g., “DISPLAY”.

12.3 uvm_report_server

The class uvm_report_server shall act as a global server that processes all of the reports generated by a

uvm_report_handler. None of its member functions are intended to be called by normal testbench code, although

in some circumstances the virtual member functions process_report and/or compose_uvm_info may be overloaded

in a subclass.

12.3.1 Class definition

namespace uvm {

 class uvm_report_server : public uvm_object

 {

 public:

 uvm_report_server();

 static void set_server(uvm_report_server* server);

 static uvm_report_server* get_server();

 void set_max_quit_count(int count, bool overridable = true);

 int get_max_quit_count() const;

 void set_quit_count(int quit_count);

 int get_quit_count() const;

 void incr_quit_count();

 void reset_quit_count();

Page 185 UVM-SystemC Language Reference Manual – DRAFT

 bool is_quit_count_reached();

 void set_severity_count(uvm_severity severity, int count);

 int get_severity_count(uvm_severity severity) const;

 void incr_severity_count(uvm_severity severity);

 void reset_severity_counts();

 void set_id_count(const std::string& id, int count);

 int get_id_count(const std::string& id) const;

 void incr_id_count(const std::string& id);

 virtual void process_report(uvm_severity severity,

 const std::string& name,

 const std::string& id,

 const std::string& message,

 uvm_action action,

 UVM_FILE file,

 const std::string& filename,

 int line,

 const std::string& composed_message,

 int verbosity_level,

 uvm_report_object* client);

 virtual std::string compose_message(uvm_severity severity,

 const std::string& name,

 const std::string& id,

 const std::string& message,

 const std::string& filename,

 int line) const;

 virtual void report_summarize(UVM_FILE file = 0) const;

 void dump_server_state() const;

 }; // class uvm_report_server

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 186

12.3.2 Constructor

uvm_report_server();

The constructor shall create a uvm_report_server object, if not already created. Else, it does nothing.

12.3.3 Member functions

12.3.3.1 set_server

static void set_server(uvm_report_server* server);

The member function set_server shall set the global report server to use for reporting. The report server is

responsible for formatting messages.

12.3.3.2 get_server

static uvm_report_server* get_server();

The member function get_server shall get the global report server. This member function will always return a valid

handle to a report server.

12.3.3.3 set_max_quit_count

void set_max_quit_count(int count, bool overridable = true);

The member function set_max_quit_count shall set the maximum number of COUNT actions that can be tolerated

before a UVM_EXIT action is taken. The default is 0, which specifies no maximum.

12.3.3.4 get_max_quit_count

int get_max_quit_count() const;

The member function get_max_quit_count shall get the maximum number of COUNT actions that can be tolerated

before a UVM_EXIT action is taken. The member function shall return 0 if no maximum is set.

12.3.3.5 set_quit_count

void set_quit_count(int quit_count);

The member function set_quit_count shall set the quit count, i.e., the number of COUNT actions, to the value

quit_count.

12.3.3.6 get_quit_count

int get_quit_count() const;

The member function get_quit_count shall get the quit count, i.e., the number of COUNT actions.

Page 187 UVM-SystemC Language Reference Manual – DRAFT

12.3.3.7 incr_quit_count

void incr_quit_count();

The member function incr_quit_count shall increase the quit count with one, i.e., the number of COUNT actions.

12.3.3.8 reset_quit_count

void reset_quit_count();

The member function reset_quit_count shall reset the quit count, i.e., the number of COUNT actions, to 0.

12.3.3.9 is_quit_count_reached

bool is_quit_count_reached();

The member function is_quit_count_reached shall return true when the quit counter has reached the maximum.

12.3.3.10 set_severity_count

void set_severity_count(uvm_severity severity, int count);

The member function set_severity_count shall set the counter for the given severity to counter value count.

12.3.3.11 get_severity_count

int get_severity_count(uvm_severity severity) const;

The member function get_severity_count shall get the counter value for the given severity.

12.3.3.12 incr_severity_count

void incr_severity_count(uvm_severity severity);

The member function incr_severity_count shall increase the counter value for the given severity with one.

12.3.3.13 reset_severity_counts

void reset_severity_counts();

The member function reset_severity_counts shall reset all severity counters to 0.

12.3.3.14 set_id_count

void set_id_count(const std::string& id, int count);

The member function set_id_count shall set the counter for reports with the given id.

12.3.3.15 get_id_count

int get_id_count(const std::string& id) const;

UVM-SystemC Language Reference Manual – DRAFT Page 188

The member function get_id_count shall get the counter for reports with the given id.

12.3.3.16 incr_id_count

void incr_id_count(const std::string& id);

The member function incr_id_count shall increase the counter for reports with the given id with one.

12.3.3.17 process_report

virtual void process_report(uvm_severity severity,

 const std::string& name,

 const std::string& id,

 const std::string& message,

 uvm_action action,

 UVM_FILE file,

 const std::string& filename,

 int line,

 const std::string& composed_message,

 int verbosity_level,

 uvm_report_object* client);

The member function process_report shall call the member function compose_message to construct the actual

message to be output. It then takes the appropriate action according to the value of action and file. This member

function can be overloaded by an application to customize the way the reporting system processes reports and the

actions enabled for them.

12.3.3.18 compose_message

virtual std::string compose_message(uvm_severity severity,

 const std::string& name,

 const std::string& id,

 const std::string& message,

 const std::string& filename,

 int line) const;

The member function compose_message shall construct the actual string sent to the file or command line from the

severity, component name, report id, and the message itself. An application can overload this member function to

customize report formatting.

12.3.3.19 report_summarize

virtual void report_summarize(UVM_FILE file = 0) const;

The member function report_summarize shall output statistical information issued by this central report server.

This information is sent to the standard output (stdout) if there is no argument specified or if the argument file is 0;

Page 189 UVM-SystemC Language Reference Manual – DRAFT

otherwise the information is send to a file using the argument file as file handle. The member function

uvm_root::run_test shall call this member function at the end of simulation.

12.3.3.20 dump_server_state

void dump_server_state() const;

The member function dump_server_state shall print server state information.

12.4 uvm_report_catcher

The class uvm_report_catcher shall be used to catch messages issued by the uvm report server. Catchers are

objects of type uvm_callbacks<uvm_report_object, uvm_report_catcher>, so all facilities in the classes

uvm_callback and uvm_callbacks<T, CB> are available for registering catchers and controlling catcher state.

Multiple report catchers can be registered with a report object. The catchers can be registered as default catchers

which catch all reports on all reporters of type uvm_report_object, or catchers can be attached to specific report

objects (i.e. components).

User extensions of uvm_report_catcher must implement the catch method in which the action to be taken on

catching the report is specified. The catch method can return CAUGHT, in which case further processing of the

report is immediately stopped, or return THROW in which case the (possibly modified) report is passed on to other

registered catchers. The catchers are processed in the order in which they are registered.

On catching a report, the catch method can modify the severity, id, action, verbosity or the report string itself before

the report is finally issued by the report server. The report can be immediately issued from within the catcher class

by calling the issue method.

The catcher maintains a count of all reports with severity UVM_FATAL, UVM_ERROR or UVM_WARNING

severity and a count of all reports with severity UVM_FATAL, UVM_ERROR or UVM_WARNING whose

severity was lowered. These statistics are reported in the summary of the uvm_report_server.

12.4.1 Class definition

namespace uvm {

 class uvm_report_catcher : public uvm_callback

 {

 public:

 typedef enum { UNKNOWN_ACTION, THROW, CAUGHT} action_e;

 uvm_report_catcher(const std::string& name = "uvm_report_catcher");

 // Group: Current Message State

 uvm_report_object* get_client() const;

 uvm_severity get_severity() const;

 int get_verbosity() const;

UVM-SystemC Language Reference Manual – DRAFT Page 190

 std::string get_id() const;

 std::string get_message() const;

 uvm_action get_action() const;

 std::string get_fname() const;

 int get_line() const;

 // Group: Change Message State

 protected:

 void set_severity(uvm_severity severity);

 void set_verbosity(int verbosity);

 void set_id(const std::string& id);

 void set_message(const std::string& message);

 void set_action(uvm_action action);

 // Group: Debug

 static uvm_report_catcher* get_report_catcher(const std::string& name);

 static void print_catcher(UVM_FILE file = 0);

 // Group: Callback interface

 virtual action_e do_catch() = 0;

 // Group: Reporting

 protected:

 void uvm_report_fatal(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

 void uvm_report_error(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

 void uvm_report_warning(const std::string& id,

 const std::string& message,

Page 191 UVM-SystemC Language Reference Manual – DRAFT

 int verbosity,

 const std::string& fname = "",

 int line = 0);

 void uvm_report_info(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

 void issue();

 static void summarize_report_catcher(UVM_FILE file);

 }; // class uvm_report_catcher

} // namespace uvm

12.4.2 Constructor

uvm_report_catcher(const std::string& name = "uvm_report_catcher");

The constructor shall create a new report catcher object. The argument name is optional, but should generally be

provided to aid in debugging.

12.4.3 Current message state

12.4.3.1 get_client

uvm_report_object* get_client() const;

The member function get_client shall return the uvm_report_object that has generated the message that is

currently being processed.

12.4.3.2 get_severity

uvm_severity get_severity() const;

The member function get_severity shall return the uvm_severity of the message that is currently being processed. If

the severity was modified by a previously executed report object (which re-threw the message), then the returned

severity is the modified value.

12.4.3.3 get_verbosity

int get_verbosity() const;

UVM-SystemC Language Reference Manual – DRAFT Page 192

The member function get_verbosity shall return the verbosity of the message that is currently being processed. If

the verbosity was modified by a previously executed report object (which re-threw the message), then the returned

verbosity is the modified value.

12.4.3.4 get_id

std::string get_id() const;

The member function get_id shall return the string id of the message that is currently being processed. If the id was

modified by a previously executed report object (which re-threw the message), then the returned id is the modified

value.

12.4.3.5 get_message

std::string get_message() const;

The member function get_message shall return the string message of the message that is currently being processed.

If the message was modified by a previously executed report object (which re-threw the message), then the returned

message is the modified value.

12.4.3.6 get_action

uvm_action get_action() const;

The member function get_action shall return the uvm_action of the message that is currently being processed. If

the action was modified by a previously executed report object (which re-threw the message), then the returned

action is the modified value.

12.4.3.7 get_fname

std::string get_fname() const;

The member function get_fname shall return the file name of the message.

12.4.3.8 get_line

int get_line() const;

The member function get_line shall return the line number of the message.

12.4.4 Change message state

12.4.4.1 set_severity

void set_severity(uvm_severity severity);

The member function set_severity shall change the severity of the message to severity. Any other report catchers

will see the modified value.

Page 193 UVM-SystemC Language Reference Manual – DRAFT

12.4.4.2 set_verbosity

void set_verbosity(int verbosity);

The member function set_severity shall change the verbosity of the message to verbosity. Any other report catchers

will see the modified value.

12.4.4.3 set_id

void set_id(const std::string& id);

The member function set_id shall change the id of the message to id. Any other report catchers will see the modified

value.

12.4.4.4 set_message

void set_message(const std::string& message);

The member function set_message shall change the text of the message to message. Any other report catchers will

see the modified value.

12.4.4.5 set_action

void set_action(uvm_action action);

The member function set_action shall change the action of the message to action. Any other report catchers will see

the modified value.

12.4.5 Debug

12.4.5.1 get_report_catcher

static uvm_report_catcher* get_report_catcher(const std::string& name);

The member function get_report_catcher shall return the first report catcher that has name.

12.4.5.2 print_catcher

static void print_catcher(UVM_FILE file = 0);

The member function print_catcher shall print information about all of the report catchers that are registered. For

finer grained detail, the member function uvm_callbacks<T,CB>::display can be used by calling

uvm_report_cb::display(uvm_report_object).

12.4.6 Callback interface

12.4.6.1 do_catch (catch†)

virtual action_e do_catch() = 0

UVM-SystemC Language Reference Manual – DRAFT Page 194

The member function do_catch shall be called for each registered report catcher. The member functions in the

Current Message State interface (see 12.4.3) can be used to access information about the current message being

processed.

12.4.7 Reporting

12.4.7.1 uvm_report_fatal

void uvm_report_fatal(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

The member function uvm_report_fatal shall issue a fatal message using the current messages report object. This

message will bypass any message catching callbacks.

12.4.7.2 uvm_report_error

void uvm_report_error(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

The member function uvm_report_error shall issue an error message using the current messages report object.

This message will bypass any message catching callbacks.

12.4.7.3 uvm_report_warning

void uvm_report_warning(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

 int line = 0);

The member function uvm_report_warning shall issue a warning message using the current messages report

object. This message will bypass any message catching callbacks.

12.4.7.4 uvm_report_info

void uvm_report_info(const std::string& id,

 const std::string& message,

 int verbosity,

 const std::string& fname = "",

Page 195 UVM-SystemC Language Reference Manual – DRAFT

 int line = 0);

The member function uvm_report_info shall issue an info message using the current messages report object. This

message will bypass any message catching callbacks.

12.4.7.5 issue

void issue();

The member function issue shall immediately issue the message which is currently being processed. This is useful if

the message is being CAUGHT but should still be emitted. Issuing a message will update the report_server stats,

possibly multiple times if the message is not CAUGHT.

12.4.7.6 summarize_report_catcher

static void summarize_report_catcher(UVM_FILE file);

The member function summarize_report_catcher shall print the statistics for the active catchers. It shall be called

automatically by the member function uvm_report_server::summarize.

UVM-SystemC Language Reference Manual – DRAFT Page 196

13. Macros

UVM-SystemC defines macros for the following functions:

 Component and object registration

 Reporting

 Sequence execution

 Callbacks

13.1 Component and object registration macros

These macros shall register components and objects with the uvm_factory, using the component registry

uvm_component_registry or uvm_object_registry, respectively. In addition, they shall implement the member

functions get_type and get_type_name to facilitate debugging and factory configuration or overrides.

13.1.1 Macro definitions

namespace uvm {

 #define UVM_OBJECT_UTILS(implementation-defined) implementation-defined

 #define UVM_OBJECT_PARAM_UTILS(implementation-defined) implementation-defined

 #define UVM_COMPONENT_UTILS(implementation-defined) implementation-defined

 #define UVM_COMPONENT_PARAM_UTILS(implementation-defined) implementation-defined

} // namespace uvm

13.1.2 UVM_OBJECT_UTILS, UVM_OBJECT_PARAM_UTILS

#define UVM_OBJECT_UTILS(implementation-defined) implementation-defined

#define UVM_OBJECT_PARAM_UTILS(implementation-defined) implementation-defined

The macros UVM_OBJECT_UTILS and UVM_OBJECT_PARAM_UTILS shall implement the following

functionality:

 Implement the virtual member function get_type_name with the following signature:

virtual const std::string get_type_name() const;

This member function shall return the name of the class, which is provided as argument to this macro, as

string.

 Implement the static member function get_type with the following signature:

static uvm_object_registry< classname >* get_type();

This member function shall return the factory proxy object as pointer of type uvm_object_registry.

 Register the class with the factory.

NOTEAn implementation may use the concept of variadic macros to be able to accept a variable number of macro arguments.

Page 197 UVM-SystemC Language Reference Manual – DRAFT

13.1.3 UVM_COMPONENT_UTILS, UVM_COMPONENT_PARAM_UTILS

#define UVM_COMPONENT_UTILS(implementation-defined) implementation-defined

#define UVM_COMPONENT_PARAM_UTILS(implementation-defined) implementation-defined

The macros UVM_COMPONENT_UTILS and UVM_COMPONENT_PARAM_UTILS shall implement the

following functionality:

 Implement the virtual member function get_type_name with the following signature:

virtual const std::string get_type_name() const;

This member function shall return the name of the class, which is provided as argument to this macro, as

string.

 Implement the static member function get_type with the following signature:

static uvm_component_registry< classname >* get_type();

This member function shall return the factory proxy object as pointer of type uvm_component_registry.

 Register the class with the factory

NOTEAn implementation may use the concept of variadic macros to be able to accept a variable number of macro arguments.

13.2 Reporting macros

The report macros shall provide additional functionality to the UVM reporting classes to facilitate efficient filtering

messages based on verbosity, id and severity information, as well as annotating file and line number information to

the reported messages.

13.2.1 Macro definitions

namespace uvm {

 #define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined

 #define UVM_WARNING(ID, MSG) implementation-defined

 #define UVM_ERROR(ID, MSG) implementation-defined

 #define UVM_FATAL(ID, MSG) implementation-defined

} // namespace uvm

13.2.2 UVM_INFO

#define UVM_INFO(ID, MSG, VERBOSITY) implementation-defined

The macro UVM_INFO shall only call member function uvm_report_info if argument VERBOSITY is lower than

the configured verbosity of the associated reporter. Argument ID is given as the message tag and argument MSG is

given as the message text. The file and line number are also sent to the member function uvm_report_info by

means of using the predefined macros __FILE__ and __LINE__.

UVM-SystemC Language Reference Manual – DRAFT Page 198

13.2.3 UVM_WARNING

#define UVM_WARNING(ID, MSG) implementation-defined

The macro UVM_WARNING shall call the member function uvm_report_warning with a verbosity of

UVM_NONE. The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by

setting the action for the message. Argument ID is given as the message tag and argument MSG is given as the

message text. The file and line number are also sent to the member function uvm_report_warning by means of

using the predefined macros __FILE__ and __LINE__.

13.2.4 UVM_ERROR

#define UVM_ERROR(ID, MSG) implementation-defined

The macro UVM_ERROR shall call the member function uvm_report_error with a verbosity of UVM_NONE.

The message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the action

for the message. Argument ID is given as the message tag and argument MSG is given as the message text. The file

and line number are also sent to the member function uvm_report_error by means of using the predefined macros

__FILE__ and __LINE__.

13.2.5 UVM_FATAL

#define UVM_FATAL(ID, MSG) implementation-defined

The macro UVM_FATAL shall call member function uvm_report_fatal with a verbosity of UVM_NONE. The

message cannot be turned off using the reporter’s verbosity setting, but can be turned off by setting the action for the

message. Argument ID is given as the message tag and argument MSG is given as the message text. The file and

line number are also sent to the member function uvm_report_fatal by means of using the predefined macros

__FILE__ and __LINE__.

13.3 Sequence execution macros

The sequence execution macros are shall provide a convenience layer to start sequences or sequence items on a

default sequencer, if not specified, or on another sequencer if specified.

NOTEIt is strongly recommended not to use the sequence execution macros in an application. Instead, for a sequence item to

start, it is recommended to use the member functions start_item (see 9.3.6.2) and finish_item (see 9.3.6.3). To start a sequence,

it is recommended to use the member function start (see 9.3.4.1).

13.3.1 Macro definitions

namespace uvm {

 #define UVM_DO(SEQ_OR_ITEM) implementation-defined

 #define UVM_DO_PRI(SEQ_OR_ITEM, PRIORITY) implementation-defined

 #define UVM_DO_ON(SEQ_OR_ITEM, SEQR) implementation-defined

 #define UVM_DO_ON_PRI(SEQ_OR_ITEM, SEQR, PRIORITY) implementation-defined

 #define UVM_CREATE(SEQ_OR_ITEM) implementation-defined

Page 199 UVM-SystemC Language Reference Manual – DRAFT

 #define UVM_CREATE_ON(SEQ_OR_ITEM, SEQR) implementation-defined

 #define UVM_DECLARE_P_SEQUENCER(SEQR) implementation-defined

} // namespace uvm

13.3.2 UVM_DO

#define UVM_DO(SEQ_OR_ITEM) implementation-defined

The macro UVM_DO shall start the execution of a sequence or sequence item. It takes as an argument

SEQ_OR_ITEM, which is an object of type uvm_sequence_item or object of type uvm_sequence.

In the case of a sequence, the sub-sequence shall be started using member function uvm_sequence_base::start with

argument call_pre_post set to false. In the case of a sequence item, the item shall be sent to the driver through the

associated sequencer.

NOTERandomization is not yet implemented as part of the UVM_DO macro.

13.3.3 UVM_DO_PRI

#define UVM_DO_PRI(SEQ_OR_ITEM, PRIORITY) implementation-defined

The macro UVM_DO_PRI shall implement the same functionality as UVM_DO, except that the sequence item or

sequence is executed with the priority specified in the argument PRIORITY.

13.3.4 UVM_DO_ON

#define UVM_DO_ON(SEQ_OR_ITEM, SEQR) implementation-defined

The macro UVM_DO_ON shall implement the same functionality as UVM_DO, except that it also sets the parent

sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified argument SEQR.

13.3.5 UVM_DO_ON_PRI

#define UVM_DO_ON_PRI(SEQ_OR_ITEM, SEQR, PRIORITY) implementation-defined

The macro UVM_DO_ON_PRI shall implement the same functionality as UVM_DO_PRI, except that it also sets

the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified

argument SEQR.

13.3.6 UVM_CREATE

#define UVM_CREATE(SEQ_OR_ITEM) implementation-defined

The macro UVM_CREATE shall create and register the sequence item or sequence using the factory. It

intentionally does not start the execution.

NOTEAfter calling this member function, an application can manually set values and start the execution.

UVM-SystemC Language Reference Manual – DRAFT Page 200

13.3.7 UVM_CREATE_ON

#define UVM_CREATE_ON(SEQ_OR_ITEM, SEQR) implementation-defined

The macro UVM_CREATE_ON shall implement the same functionality as UVM_CREATE, except that it also sets

the parent sequence to the sequence in which the macro is invoked, and it sets the sequencer to the specified

argument SEQR.

13.3.8 UVM_DECLARE_P_SEQUENCER

#define UVM_DECLARE_P_SEQUENCER(SEQR) implementation-defined

The macro UVM_DECLARE_P_SEQUENCER shall declare a variable p_sequencer whose type is specified by

The argument SEQUENCER.

13.4 Callback macros

The callback macros shall register and execute callbacks which are derived from class uvm_callbacks.

13.4.1 Macro definitions

namespace uvm {

 #define UVM_REGISTER_CB(T, CB) implementation-defined

 #define UVM_DO_CALLBACKS(T, CB, METHOD) implementation-defined

} // namespace uvm

13.4.2 UVM_REGISTER_CB

#define UVM_REGISTER_CB(T, CB) implementation-defined

The macro UVM_REGISTER_CB shall register the given callback type CB with the given object type T. If a type-

callback pair is not registered, then a warning is issued if an attempt is made to use the pair (add, delete, etc.).

13.4.3 UVM_DO_CALLBACKS

#define UVM_DO_CALLBACKS(T, CB, METHOD) implementation-defined

The macro UVM_DO_CALLBACKS shall call the given METHOD of all callbacks of type CB registered with the

calling object (i.e. this object), which is or is based on type T.

This macro executes all of the callbacks associated with the calling object (i.e. this object). The macro takes three

arguments:

 CB is the class type of the callback objects to execute. The class type must have a function signature that

matches the argument METHOD.

Page 201 UVM-SystemC Language Reference Manual – DRAFT

 T is the type associated with the callback. Typically, an instance of type T is passed as one the arguments in

the METHOD call.

 METHOD is the method call to invoke, with all required arguments as if they were invoked directly.

UVM-SystemC Language Reference Manual – DRAFT Page 202

14. TLM interfaces

The TLM interfaces of UVM-SystemC shall be derived from the SystemC TLM interface definitions as defined in

IEEE Std. 1666-2011. As communication between UVM components is primarily based on TLM-1 message passing

semantics, dedicated ports and exports are defined compliant with these semantics.

NOTEUVM-SystemC does not yet define the TLM-2.0 blocking and non-blocking transport interfaces, direct memory interface

(DMI), nor a debug transport interface. Use the SystemC TLM-2.0 interfaces instead.

The following TLM-1 ports are defined in UVM-SystemC:

 Ports based on TLM-1 blocking interfaces:

o uvm_blocking_put_port

o uvm_blocking_get_port

o uvm_blocking_peek_port

o uvm_blocking_get_peek_port

 Ports based on TLM-1 non-blocking interfaces:

o uvm_nonblocking_put_port

o uvm_nonblocking_get_port

o uvm_nonblocking_peek_port

o uvm_nonblocking_get_peek_port

 Analysis port and export classes:

o uvm_analysis_port

o uvm_analysis_export

o uvm_analysis_imp

 Request-response channel class:

o uvm_tlm_req_rsp_channel

 Sequencer interface classes

o uvm_sqr_if_base

o uvm_seq_item_pull_port

o uvm_seq_item_pull_export

o uvm_seq_item_pull_imp

NOTE 1There are no dedicated TLM-1 FIFO and FIFO interface classes defined in UVM-SystemC. Instead, the use the

SystemC FIFO base classes tlm::tlm_fifo<T> or tlm::tlm_analysis_fifo, or FIFO interfaces tlm::tlm_fifo_debug_if,

tlm::tlm_fifo_put_if, and tlm::tlm_fifo_get_if is recommended.

Page 203 UVM-SystemC Language Reference Manual – DRAFT

14.1 uvm_blocking_put_port

The class uvm_blocking_put_port offers a convenience layer for UVM users to access the SystemC TLM-1

blocking interface tlm::tlm_blocking_put_if. As this port class shall be derived from class uvm_port_base, it

inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.1.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_blocking_put_port : public uvm_port_base< tlm::tlm_blocking_put_if<T> >

 {

 public:

 uvm_blocking_put_port();

 uvm_blocking_put_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void put(const T& val);

 }; // class uvm_blocking_put_port

} // namespace uvm

14.1.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.1.3 Constructor

uvm_blocking_put_port();

uvm_blocking_put_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking put interface semantics. If specified, the argument

name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.1.4 Member functions

14.1.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_put_port”.

UVM-SystemC Language Reference Manual – DRAFT Page 204

14.1.4.2 put

virtual void put(const T& val);

The member function put shall send the transaction of type T to the recipient. It shall call the member function put

of the associated interface which is bound to this port.

According to the TLM-1 blocking put semantics, the member function put shall not return until the recipient has

indicated that the transaction object has been processed, by calling member function get or peek. Subsequent calls to

the member function put shall be treated as distinct transaction instances, regardless of whether or not the same

transaction object or message is passed.

14.2 uvm_blocking_get_port

The class uvm_blocking_get_port offers a convenience layer for UVM users to access the SystemC TLM-1

blocking interface tlm::tlm_blocking_get_if. As this port class shall be derived from class uvm_port_base, it

inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.2.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_blocking_get_port : public uvm_port_base< tlm::tlm_blocking_get_if<T> >

 {

 public:

 uvm_blocking_get_port();

 uvm_blocking_get_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void get(T& val);

 }; // class uvm_blocking_get_port

} // namespace uvm

14.2.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

14.2.3 Constructor

uvm_blocking_get_port();

uvm_blocking_get_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking get interface semantics. If specified, the argument

name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

Page 205 UVM-SystemC Language Reference Manual – DRAFT

14.2.4 Member functions

14.2.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_port”.

14.2.4.2 get

virtual void get(T& val);

The member function get shall retrieve a transaction of type T from the sender. It shall call the member function get

of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction object

has been delivered by the sender by means of its member function put. Subsequent calls to the member function get

shall return a different transaction object. This actually means that a call to get shall consume the transaction from

the sender.

14.3 uvm_blocking_peek_port

The class uvm_blocking_peek_port offers a convenience layer for UVM users to access the SystemC TLM-1

blocking interface tlm::tlm_blocking_peek_if. As this port class shall be derived from class uvm_port_base, it

inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.3.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_blocking_peek_port : public uvm_port_base< tlm::tlm_blocking_peek_if<T> >

 {

 public:

 uvm_blocking_peek_port();

 uvm_blocking_peek_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void peek(T& val) const;

 }; // class uvm_blocking_peek_port

} // namespace uvm

14.3.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

UVM-SystemC Language Reference Manual – DRAFT Page 206

14.3.3 Constructor

uvm_blocking_peek_port();

uvm_blocking_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking peek interface semantics. If specified, the argument

name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.3.4 Member functions

14.3.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_peek_port”.

14.3.4.2 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member function

peek of the associated interface which is bound to this port.

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction

object has been delivered by the sender by means of its member function put. Subsequent calls to the member

function peek shall return exactly the same transaction object. This actually means that a call to peek shall not

consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

14.4 uvm_blocking_get_peek_port

The class uvm_blocking_get_peek_port offers a convenience layer for UVM users to access the SystemC TLM-1

blocking interface tlm::tlm_blocking_get_peek_if. As this port class shall be derived from class uvm_port_base, it

inherits the UVM specific member functions connect, get_name, get_full_name and get_type_name.

14.4.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_blocking_get_peek_port : public uvm_port_base< tlm::tlm_blocking_get_peek_if<T> >

 {

 public:

 uvm_blocking_get_peek_port();

 uvm_blocking_get_peek_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void get(T& val);

Page 207 UVM-SystemC Language Reference Manual – DRAFT

 virtual void peek(T& val) const;

 }; // class uvm_blocking_get_peek_port

} // namespace uvm

14.4.2 Template parameter T

The template parameter T specifies the type of transaction to be received by the port.

14.4.3 Constructor

uvm_blocking_get_peek_port();

uvm_blocking_get_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 blocking get and peek interface semantics. If specified, the

argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.4.4 Member functions

14.4.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_blocking_get_peek_port”.

14.4.4.2 get

virtual void get(T& val);

The member function get shall retrieve a transaction of type T from the sender. It shall call the member function get

of the associated interface which is bound to this port.

According to the TLM-1 blocking get semantics, the member function get shall not return until a transaction object

has been delivered by the sender by means of its member function put. Subsequent calls to the member function get

shall return a different transaction object. This actually means that a call to get shall consume the transaction from

the sender.

14.4.4.3 peek

virtual void peek(T& val) const;

The member function peek shall retrieve a transaction of type T from the sender. It shall call the member function

peek of the associated interface which is bound to this port (see member function connect).

According to the TLM-1 blocking peek semantics, the member function peek shall not return until a transaction

object has been delivered by the sender by means of its member function put. Subsequent calls to the member

function peek shall return exactly the same transaction object. This actually means that a call to peek shall not

consume the transaction from the sender. A transaction shall only be consumed by means of a call to get.

UVM-SystemC Language Reference Manual – DRAFT Page 208

14.5 uvm_nonblocking_put_port

14.5.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_nonblocking_put_port : public uvm_port_base< tlm::tlm_nonblocking_put_if<T> >

 {

 public:

 uvm_nonblocking_put_port();

 uvm_nonblocking_put_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual bool try_put(const T& val);

 virtual bool can_put() const;

 }; // class uvm_nonblocking_put_port

} // namespace uvm

14.5.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.5.3 Constructor

uvm_nonblocking_put_port();

uvm_nonblocking_put_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking put interface semantics. If specified, the argument

name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.5.4 Member functions

14.5.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_put_port”.

14.5.4.2 try_put

virtual bool try_put(const T& val);

Page 209 UVM-SystemC Language Reference Manual – DRAFT

The member function try_put shall send the transaction of type T to the recipient, if possible. It shall call the

corresponding non-blocking put method of the associated interface which is bound to this port. If the recipient is

able to respond immediately, then the member function shall return true. Otherwise, the member function shall

return false, and shall not accept or return the next transaction.

14.5.4.3 can_put

virtual bool can_put() const;

The member function can_put shall return true if the recipient is able to respond immediately; otherwise it shall

return false.

14.6 uvm_nonblocking_get_port

14.6.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_nonblocking_get_port : public uvm_port_base< tlm::tlm_nonblocking_get_if<T> >

 {

 public:

 uvm_nonblocking_get_port();

 uvm_nonblocking_get_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual bool try_get(T& val);

 virtual bool can_get() const;

 }; // class uvm_nonblocking_get_port

} // namespace uvm

14.6.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.6.3 Constructor

uvm_nonblocking_get_port();

uvm_nonblocking_get_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get interface semantics. If specified, the argument

name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

UVM-SystemC Language Reference Manual – DRAFT Page 210

14.6.4 Member functions

14.6.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_port”.

14.6.4.2 try_get

virtual bool try_get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-blocking

get method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return

true. Otherwise, the output argument is not modified and the member function shall return false.

14.6.4.3 can_get

virtual bool can_get() const;

The member function can_get shall return true if a new transaction can be provided immediately upon request.

Otherwise it shall return false.

14.7 uvm_nonblocking_peek_port

14.7.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_nonblocking_peek_port : public uvm_port_base< tlm::tlm_nonblocking_peek_if<T> >

 {

 public:

 uvm_nonblocking_peek_port();

 uvm_nonblocking_peek_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual bool try_peek(T& val);

 virtual bool can_peek() const;

 }; // class uvm_nonblocking_peek_port

} // namespace uvm

Page 211 UVM-SystemC Language Reference Manual – DRAFT

14.7.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.7.3 Constructor

uvm_nonblocking_peek_port();

uvm_nonblocking_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking peek interface semantics. If specified, the

argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.7.4 Member functions

14.7.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_peek_port”.

14.7.4.2 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call the

corresponding non-blocking peek method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return

true. Otherwise, the output argument is not modified and the member function shall return false.

14.7.4.3 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon request.

Otherwise it shall return false.

14.8 uvm_nonblocking_get_peek_port

14.8.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_nonblocking_get_peek_port

 : public uvm_port_base< tlm::tlm_nonblocking_get_peek_if<T> >

 {

 public:

UVM-SystemC Language Reference Manual – DRAFT Page 212

 uvm_nonblocking_get_peek_port();

 uvm_nonblocking_get_peek_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual bool try_get(T& val);

 virtual bool can_get() const;

 virtual bool try_peek(T& val);

 virtual bool can_peek() const;

 }; // class uvm_nonblocking_get_peek_port

} // namespace uvm

14.8.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the port.

14.8.3 Constructor

uvm_nonblocking_get_peek_port();

uvm_nonblocking_get_peek_port(const std::string& name);

The constructor shall create a new port with TLM-1 non-blocking get and peek interface semantics. If specified, the

argument name shall define the name of the port. Otherwise, the name of the port is implementation-defined.

14.8.4 Member functions

14.8.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_nonblocking_get_peek_port”.

14.8.4.2 try_get

virtual bool try_get(T& val);

The member function try_get shall retrieve a new transaction of type T. It shall call the corresponding non-blocking

get method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return

true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.3 can_get

virtual bool can_get() const;

Page 213 UVM-SystemC Language Reference Manual – DRAFT

The member function can_get shall return true if a new transaction can be provided immediately upon request.

Otherwise it shall return false.

14.8.4.4 try_peek

virtual bool try_peek(T& val);

The member function try_peek shall retrieve a new transaction of type T without consuming it. It shall call the

corresponding non-blocking peek method of the associated interface which is bound to this port.

If a transaction is immediately available, then it is written to the argument val and the member function shall return

true. Otherwise, the output argument is not modified and the member function shall return false.

14.8.4.5 can_peek

virtual bool can_peek() const;

The member function can_peek shall return true if a new transaction can be provided immediately upon request.

Otherwise it shall return false.

14.9 uvm_analysis_port

The class uvm_analysis_port offers a convenience layer for UVM users and is compatible with the SystemC

tlm::tlm_analysis_port, since it shall be derived from this class. Primary reason to introduce this derived port class

is to offer the UVM specific member function connect as alternative to the SystemC bind and operator() to connect

analysis ports with exports.

14.9.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_analysis_port : public tlm::tlm_analysis_port<T>

 {

 public:

 uvm_analysis_port();

 uvm_analysis_port(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void connect(tlm::tlm_analysis_if<T>& _if);

 void write(const T& t);

 }; // class uvm_analysis_port

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 214

14.9.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.9.3 Constructor

uvm_analysis_port();

uvm_analysis_port(const std::string& name);

The constructor shall create a new analysis port. If specified, the argument name shall define the name of the port.

Otherwise, the name of the port is implementation-defined.

NOTEUVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments min_size and max_size to

specify the minimum and maximum number of interfaces, respectively, that must have been connected to this port by the end of

elaboration.

14.9.4 Member functions

14.9.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_port”.

14.9.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the member

function write of such analysis port instance shall be passed on to the registered subscriber. Multiple subscribers

may be registered with a single analysis port instance.

NOTE 1The member function connect implements the same functionality as the SystemC member function bind.

NOTE 2There may be zero subscribers registered with any given analysis port instance, in which case calls to the member

function write shall not be propagated.

14.9.4.3 write

void write(const T& t);

The member function write shall call the member function write of every subscriber which is bound to this analysis

port, by passing on the argument as a const reference.

14.10 uvm_analysis_export

The class uvm_analysis_export offers a convenience layer for UVM users and is compatible with the SystemC

export type sc_core::sc_export < tlm::tlm_analysis_if <T> > since it shall be derived from this class. Primary

reason to introduce this export class is to offer the member function connect as alternative to the SystemC bind and

operator() to connect analysis ports with exports.

Page 215 UVM-SystemC Language Reference Manual – DRAFT

14.10.1 Class definition

namespace uvm {

 template <typename T>

 class uvm_analysis_export : public sc_core::sc_export< tlm::tlm_analysis_if<T> >

 {

 public:

 uvm_analysis_export();

 uvm_analysis_export(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void connect(tlm::tlm_analysis_if<T>& _if);

 }; // class uvm_analysis_export

} // namespace uvm

14.10.2 Template parameter T

The template parameter T specifies the type of transaction to be communicated by the analysis port.

14.10.3 Constructor

uvm_analysis_export();

uvm_analysis_export(const std::string& name);

The constructor shall create a new analysis export. If specified, the argument name shall define the name of the

export. Otherwise, the name of the export is implementation-defined.

NOTEUVM-SystemC does not define, in contrast to UVM-SystemVerilog, the constructor arguments min_size and max_size to

specify the minimum and maximum number of interfaces, respectively, that must have been connected to this port by the end of

elaboration.

14.10.4 Member functions

14.10.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_export”.

14.10.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

UVM-SystemC Language Reference Manual – DRAFT Page 216

The member function connect shall register the subscriber passed as an argument, so that any call to the member

function write of such analysis export instance shall be passed on to the registered subscriber. Multiple subscribers

may be registered with a single analysis export instance.

NOTE 1The member function connect implements the same functionality as the SystemC member function bind.

NOTE 2There may be zero subscribers registered with any given analysis export instance, in which case calls to the member

function write shall not be propagated.

14.11 uvm_analysis_imp

The class uvm_analysis_imp shall serve as termination point of analysis port and export connections. It shall call

the member function write of the component type passed as second template argument via its own member function

write, without modification of the value passed to it.

14.11.1 Class definition

namespace uvm {

 template <typename T = int, typename IMP = int>

 class uvm_analysis_imp : public tlm::tlm_analysis_port<T>

 {

 public:

 uvm_analysis_imp();

 uvm_analysis_imp(const std::string& name);

 virtual const std::string get_type_name() const;

 virtual void connect(tlm::tlm_analysis_if<T>& _if);

 void write(const T& t);

 }; // class uvm_analysis_imp

} // namespace uvm

14.11.2 Template parameters

The template parameter T specifies the type of transaction to be communicated by the analysis port. The template

parameter IMP specifies the component type which implements the member function write.

14.11.3 Constructor

uvm_analysis_imp();

uvm_analysis_imp(const std::string& name);

The constructor shall create a new analysis implementation. If specified, the argument name shall define the name of

the export. Otherwise, the name of the export is implementation-defined.

Page 217 UVM-SystemC Language Reference Manual – DRAFT

14.11.4 Member functions

14.11.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_analysis_imp”.

14.11.4.2 connect

virtual void connect(tlm::tlm_analysis_if<T>& _if);

The member function connect shall register the subscriber passed as an argument, so that any call to the member

function write of such analysis implementation instance shall be passed on to the registered subscriber. Multiple

subscribers may be registered with a single analysis export instance.

NOTE 1The member function connect implements the same functionality as the SystemC member function bind.

14.11.4.3 write

void write(const T& t);

The member function write shall shall call the member function write of the associated subscriber which is

specified as second template argument, by passing on the argument as a const reference.

14.12 uvm_tlm_req_rsp_channel

The class uvm_tlm_req_rsp_channel offers a convenience layer for UVM users and is compatible with the

SystemC tlm::tlm_req_rsp_channel, since it shall be derived from this class. It offers some UVM additional

capabilities such as the analysis ports for request and response monitoring.

The class uvm_tlm_req_rsp_channel contains a request FIFO of default type tlm::tlm_fifo<REQ> and a response

FIFO of default type tlm::tlm_fifo<RSP>. These FIFOs can be of any size. This channel is particularly useful for

dealing with pipelined protocols where the request and response are not tightly coupled.

14.12.1 Class definition

namespace uvm {

 template < typename REQ,

 typename RSP = REQ,

 typename REQ_CHANNEL = tlm::tlm_fifo<REQ>,

 typename RSP_CHANNEL = tlm::tlm_fifo<RSP> >

 class uvm_tlm_req_rsp_channel

 : public tlm::tlm_req_rsp_channel<REQ, RSP, REQ_CHANNEL, RSP_CHANNEL>

 {

 public:

UVM-SystemC Language Reference Manual – DRAFT Page 218

 // ports and exports

 uvm_analysis_port<REQ> request_ap;

 uvm_analysis_port<RSP> response_ap;

 sc_core::sc_export< tlm::tlm_fifo_put_if<REQ> > put_request_export;

 sc_core::sc_export< tlm::tlm_fifo_put_if<RSP> > put_response_export;

 sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_request_export;

 sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_response_export;

 sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_peek_request_export;

 sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_peek_response_export;

 sc_core::sc_export< tlm::tlm_master_if<REQ, RSP> > master_export;

 sc_core::sc_export< tlm::tlm_slave_if<REQ, RSP> > slave_export;

 // constructors

 uvm_tlm_req_rsp_channel(int req_size = 1 , int rsp_size = 1);

 uvm_tlm_req_rsp_channel(uvm_component_name name, int req_size = 1, int rsp_size = 1);

 }; // class uvm_tlm_req_rsp_channel

} // namespace uvm

14.12.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. The template

parameters REQ_CHANNEL and RSP_CHANNEL specify the type of the request and response FIFO, respectively.

If parameters REQ_CHANNEL or RSP_CHANNEL are not specified, the interface will use FIFOs of type

tlm::tlm_fifo.

14.12.3 Ports and exports

14.12.3.1 request_ap

uvm_analysis_port<REQ> request_ap;

The analysis port request_ap shall send the request transactions, which are passed via the member function put or

nb_put (via any port connected to the export put_request_export), via its member function write, to all connected

analysis exports and imps.

14.12.3.2 response_ap

uvm_analysis_port<RSP> response_ap;

Page 219 UVM-SystemC Language Reference Manual – DRAFT

The analysis port response_ap shall send the response transactions, which are passed via the member function put

or nb_put (via any port connected to the export put_response_export), via its member function write, to all

connected analysis exports and imps.

14.12.3.3 put_request_export

sc_core::sc_export< tlm::tlm_fifo_put_if<REQ> > put_request_export;

The export put_request_export shall provide both the blocking and non-blocking put interface member functions

to the request FIFO based on interface tlm::tlm_fifo_put_if, being member functions put, nb_put and nb_can_put.

Any put port variant can connect and send transactions to the request FIFO via this export, provided the transaction

types match.

14.12.3.4 put_response_export

sc_core::sc_export< tlm::tlm_fifo_put_if<RSP> > put_response_export;

The export put_response_export shall provide both the blocking and non-blocking put interface member functions

to the response FIFO based on interface tlm::tlm_fifo_put_if, being put, nb_put and nb_can_put. Any put port

variant can connect and send transactions to the response FIFO via this export, provided the transaction types match.

14.12.3.5 get_request_export

sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_request_export;

The export get_request_export shall provide both the blocking and non-blocking get and peek interface member

functions to the request FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get, peek,

nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO via this

export, provided the transaction types match.

NOTEThis member function is functionally equivalent to get_peek_request_export.

14.12.3.6 get_response_export

sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_response_export;

The export get_response_export shall provide both the blocking and non-blocking get and peek interface member

functions to the response FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get, peek,

nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the response FIFO via this

export, provided the transaction types match.

NOTEThis member function is functionally equivalent to get_peek_response_export.

14.12.3.7 get_peek_request_export

sc_core::sc_export< tlm::tlm_fifo_get_if<REQ> > get_peek_request_export;

The export get_peek_request_export shall provide both the blocking and non-blocking get and peek interface

member functions to the request FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get,

peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the request FIFO via

this export, provided the transaction types match.

UVM-SystemC Language Reference Manual – DRAFT Page 220

NOTEThis member function is functionally equivalent to get_request_export.

14.12.3.8 get_peek_response_export

sc_core::sc_export< tlm::tlm_fifo_get_if<RSP> > get_peek_response_export;

The export get_peek_response_export shall provide both the blocking and non-blocking get and peek interface

member functions to the response FIFO based on interface tlm::tlm_fifo_get_if, being get, nb_get, nb_can_get,

peek, nb_peek and nb_can_peek. Any put port variant can connect and send transactions to the response FIFO via

this export, provided the transaction types match.

NOTEThis member function is functionally equivalent to get_response_export.

14.12.3.9 master_export

sc_core::sc_export< tlm::tlm_master_if<REQ, RSP> > master_export;

The export master_export shall provide a single interface that allows a master to put requests and get or peek

responses. It is a combination of the functionality offered by the exports put_request_export and

get_peek_response_export.

14.12.3.10 slave_export

sc_core::sc_export< tlm::tlm_slave_if<REQ, RSP> > slave_export;

The export slave_export shall provide a single interface that allows a slave to get or peek requests and to put

responses. It is a combination of the functionality offered by the exports get_peek_request_export and

put_response_export.

14.12.4 Constructor

uvm_tlm_req_rsp_channel(int req_size = 1 , int rsp_size = 1);

uvm_tlm_req_rsp_channel(uvm_component_name name, int req_size = 1, int rsp_size = 1);

The constructor shall create a new TLM-1 interface containing a request and response FIFO. The argument req_size

specifies the size of the request FIFO. The argument rsp_size specifies the size of the response FIFO. If not

specified, default size of these FIFOs is 1. If specified, the argument name shall define the name of the interface.

Otherwise, the name of the interface is implementation-defined.

14.13 uvm_sqr_if_base

The class uvm_sqr_if_base shall define an interface for sequence drivers to communicate with sequencers. The

driver requires the interface via a port, and the sequencer implements it and provides it via an export.

14.13.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>

Page 221 UVM-SystemC Language Reference Manual – DRAFT

 class uvm_sqr_if_base : public virtual sc_core::sc_interface

 {

 public:

 virtual void get_next_item(REQ& req) = 0;

 virtual bool try_next_item(REQ& req) = 0;

 virtual void item_done(const RSP& item) = 0;

 virtual void item_done() = 0;

 virtual void put(const RSP& rsp) = 0;

 virtual void get(REQ& req) = 0;

 virtual void peek(REQ& req) = 0;

 protected:

 uvm_sqr_if_base();

}; // class uvm_sqr_if_base

} // namespace uvm

14.13.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively. These object

types must be a derivative of class uvm_sequence_item.

14.13.3 Member functions

14.13.3.1 get_next_item

virtual void get_next_item(REQ& req) = 0;

The member function get_next_item shall retrieve the next available item from a sequence. The call will block until

an item is available. The following steps occur on this call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on

the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant

sequence, then re-arbitrate.

2. The chosen sequence will return from member function wait_for_grant (see 9.3.6.4).

3. The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 9.3.4.4).

4. The chosen sequence item is randomized.

5. The chosen sequence’s member function uvm_sequence_base::post_do is called (see 9.3.4.7).

6. Return with a reference to the item.

UVM-SystemC Language Reference Manual – DRAFT Page 222

Once member function get_next_item is called, the member function item_done must be called to indicate the

completion of the request to the sequencer. This will remove the request item from the sequencer FIFO.

14.13.3.2 try_next_item

virtual bool try_next_item(REQ& req) = 0;

The member function try_next_item shall retrieve the next available item from a sequence if one is available. If

available, it shall return true. Otherwise, the member function shall return false. The following steps occur on this

call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on

the current sequencer arbitration mode. If no sequence is available, the member function returns false.

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see

9.3.6.4).

3. The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 9.3.4.4).

4. The chosen sequence item is randomized.

5. The chosen sequence uvm_sequence_base::post_do is called (see 9.3.4.7).

6. Return with a reference to the item.

Once the member function try_next_item is called, the member function item_done must be called to indicate the

completion of the request to the sequencer. This will remove the request item from the sequencer FIFO.

14.13.3.3 item_done

virtual void item_done(const RSP& item) = 0;

virtual void item_done() = 0;

The member function item_done shall indicate that the request is completed to the sequencer. Any

uvm_sequence_base::wait_for_item_done calls made by a sequence for this item will return.

The current item is removed from the sequencer FIFO.

If a response item is provided, then it will be sent back to the requesting sequence. The response item must have its

sequence ID and transaction ID set correctly, using the member function uvm_sequence_item::set_id_info.

Before the member function item_done is called, any calls to the member function peek will retrieve the current

item that was obtained by member function get_next_item. After the member function item_done is called,

member function peek will cause the sequencer to arbitrate for a new item.

14.13.3.4 get

virtual void get(REQ& req) = 0;

The member function get shall retrieve the next available item from a sequence. The call blocks until an item is

available. The following steps occur on this call:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on

the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant

sequence, then re-arbitrate.

Page 223 UVM-SystemC Language Reference Manual – DRAFT

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see

9.3.6.4).

3. The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 9.3.4.4).

4. The chosen sequence item is randomized.

5. The chosen sequence’s member function uvm_sequence_base::post_do is called (see 9.3.4.7).

6. Indicate item_done to the sequencer

7. Return with a reference to the item.

When the member function get is called, the member function item_done may not be called. A new item can be

obtained by calling the member function get again, or a response may be sent using either member function put, or

uvm_driver::rsp_port.write().

14.13.3.5 peek

virtual void peek(REQ& req) = 0;

The member function peek shall return the current request item if one is in the sequencer FIFO. If no item is in the

FIFO, then the call will block until the sequencer has a new request. The following steps will occur if the sequencer

FIFO is empty:

1. Arbitrate among requesting, unlocked, relevant sequences - choose the highest priority sequence based on

the current sequencer arbitration mode. If no sequence is available, wait for a requesting unlocked relevant

sequence, then re-arbitrate.

2. The chosen sequence will return from member function uvm_sequence_base::wait_for_grant (see

9.3.6.4).

3. The chosen sequence’s member function uvm_sequence_base::pre_do is called (see 9.3.4.4).

4. The chosen sequence item is randomized.

5. The chosen sequence’s member function uvm_sequence_base::post_do is called (see 9.3.4.7).

Once a request item has been retrieved and is in the sequencer FIFO, subsequent calls to member function peek will

return the same item. The item will stay in the FIFO until either the member function get or item_done is called.

14.13.3.6 put

virtual void put(const RSP& rsp) = 0;

The member function put shall send a response back to the sequence that issued the request. Before the response is

put, it must have its sequence ID and transaction ID set to match the request. This can be done using the member

function uvm_sequence_item::set_id_info.

This member function will not block. The response will be put into the sequence response queue or it will be sent to

the sequence response handler.

14.14 uvm_seq_item_pull_port

The class uvm_seq_item_pull_port shall define the port for use in sequencer-driver communication.

UVM-SystemC Language Reference Manual – DRAFT Page 224

14.14.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>

 class uvm_seq_item_pull_port : public uvm_port_base< uvm_sqr_if_base<REQ, RSP> >

 {

 public:

 uvm_seq_item_pull_port(const char* name);

 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_port

} // namespace uvm

14.14.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

14.14.3 Constructor

uvm_seq_item_pull_port(const char *name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the

name of the export is implementation-defined.

14.14.4 Member functions

14.14.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_port”.

14.15 uvm_seq_item_pull_export

The class uvm_seq_item_pull_port shall define the export for use in sequencer-driver communication.

14.15.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>

 class uvm_seq_item_pull_export : public uvm_port_base< uvm_sqr_if_base<REQ, RSP> >

 {

 public:

Page 225 UVM-SystemC Language Reference Manual – DRAFT

 uvm_seq_item_pull_export(const char* name);

 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_export

} // namespace uvm

14.15.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

14.15.3 Constructor

uvm_seq_item_pull_export(const char* name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the

name of the export is implementation-defined.

14.15.4 Member functions

14.15.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_export”.

14.16 uvm_seq_item_pull_imp

The class uvm_seq_item_pull_imp shall implement the interface used in sequencer-driver communication.

14.16.1 Class definition

namespace uvm {

 template <typename REQ, typename RSP = REQ>

 class uvm_seq_item_pull_imp : public uvm_port_base< uvm_sqr_if_base<REQ, RSP> >

 {

 public:

 uvm_seq_item_pull_imp(const char* name);

 virtual const std::string get_type_name() const;

 }; // class uvm_seq_item_pull_imp

} // namespace uvm

UVM-SystemC Language Reference Manual – DRAFT Page 226

14.16.2 Template parameters

The template parameters REQ and RSP specify the request and response object types, respectively.

14.16.3 Constructor

uvm_seq_item_pull_imp(const char* name);

The constructor shall create a new export. The argument name shall define the name of the export. Otherwise, the

name of the export is implementation-defined.

14.16.4 Member functions

14.16.4.1 get_type_name

virtual const std::string get_type_name() const;

The member function get_type_name shall return the string “uvm::uvm_seq_item_pull_imp”.

Page 227 UVM-SystemC Language Reference Manual – DRAFT

15. Global defines, typedefs and enumerations

This section lists the global defines, types and enumerations used in UVM-SystemC.

15.1 Global defines

15.1.1 UVM_MAX_STREAMBITS

The definition UVM_MAX_STREAMBITS shall be used to set the maximum size for integer types. If not defined,

a default size of 64 is used.

15.1.2 UVM_DEFAULT_TIMEOUT

The definition UVM_DEFAULT_TIMEOUT shall be used as default timeout for the run phases. If not defined, a

default timeout of 9200 seconds shall be used. The timeout can be overridden by using the member function

uvm_root::set_timeout (see 4.3.2.3).

15.2 Type definitions (typedefs)

15.2.1 uvm_bitstream_t

The typedef uvm_bitstream_t shall define an integer type with a size defined by UVM_MAX_STREAMBITS. An

application can use this type in member functions such as uvm_printer::print_field (see 5.2.3.1),

uvm_packer::pack_field (see 5.1.3.1) and uvm_packer::unpack_field (see 5.1.4.3).

15.2.2 uvm_integral_t

The typedef uvm_bitstream_t shall define an integer type with a size of 64 bits. An application can use this type in

member functions such as uvm_printer::print_field_int (see 5.2.3.2), uvm_packer::pack_field_int (see 5.1.3.2)

and uvm_packer::unpack_field_int (see 5.1.4.2).

15.2.3 UVM_FILE

The typedef uvm_file shall define the file descriptor which supports output streams.

15.2.4 uvm_report_cb

The typedef uvm_report_cb is the alias for uvm_callbacks<uvm_report_object, uvm_report_catcher>.

15.2.5 uvm_config_int

The typedef uvm_config_int is the alias for uvm_config_db<uvm_bitstream_t>.

15.2.6 uvm_config_string

The typedef uvm_config_string is the alias for uvm_config_db<std::string>.

15.2.7 uvm_config_object

The typedef uvm_config_object is the alias for uvm_config_db<uvm_object*>.

UVM-SystemC Language Reference Manual – DRAFT Page 228

15.2.8 uvm_config_wrapper

The typedef uvm_config_wrapper is the alias for uvm_config_db<uvm_object_wrapper*>.

15.3 Enumeration

15.3.1 uvm_action

The enumeration type uvm_action shall define all possible values for report actions. Each report is configured to

execute one or more actions, determined by the bitwise OR of any or all of the following enumeration constants.

 UVM_NO_ACTION: No action is taken.

 UVM_DISPLAY: Sends the report to the standard output.

 UVM_LOG: Sends the report to the file(s) for this (severity, id) pair.

 UVM_COUNT: Counts the number of reports with the COUNT attribute. When this value reaches

max_quit_count, the simulation terminates.

 UVM_EXIT: Terminates the simulation immediately.

 UVM_CALL_HOOK: Callback the report hook methods.

 UVM_STOP: Causes the simulator to stop, enabling continuation as interactive session.

15.3.2 uvm_severity

The enumeration type uvm_severity shall define all possible values for report severity:

 UVM_INFO: Informative message.

 UVM_WARNING: Indicates a potential problem.

 UVM_ERROR: Indicates a real problem. Simulation continues subject to the configured message action.

 UVM_FATAL: Indicates a problem from which simulation cannot recover. The simulation will be

terminated immediately.

15.3.3 uvm_verbosity

The enumeration type uvm_verbosity shall define standard verbosity levels for reports.

 UVM_NONE: Report is always printed. Verbosity level setting cannot disable it.

 UVM_LOW: Report is issued if configured verbosity is set to UVM_LOW or above.

 UVM_MEDIUM: Report is issued if configured verbosity is set to UVM_MEDIUM or above.

 UVM_HIGH: Report is issued if configured verbosity is set to UVM_HIGH or above.

 UVM_FULL: Report is issued if configured verbosity is set to UVM_FULL or above.

Page 229 UVM-SystemC Language Reference Manual – DRAFT

15.3.4 uvm_active_passive_enum

The enumeration type uvm_active_passive_enum shall define whether a component, usually an agent, is in

“active” mode or “passive” mode.

 UVM_ACTIVE: uvm_agent is in “active” mode, which means that the sequencer, driver and monitor are

enabled.

 UVM_PASSIVE: uvm_agent is in “passive” mode, which means that only the monitor is enabled.

15.3.5 uvm_sequence_state_enum

The enumeration type uvm_sequence_state_enum shall define the current sequence state.

 UVM_CREATED: The sequence has been allocated.

 UVM_PRE_START: The sequence is started and the callback uvm_sequence_base::pre_start is being

executed.

 UVM_PRE_BODY: The sequence is started and the callback uvm_sequence_base::pre_body is being

executed.

 UVM_BODY: The sequence is started and the callback uvm_sequence_base::body is being executed.

 UVM_ENDED: The sequence has completed the execution of the callback uvm_sequence_base::body.

 UVM_POST_BODY: The sequence is started and the callback uvm_sequence_base::post_body is being

executed.

 UVM_POST_START: The sequence is started and the callback uvm_sequence_base::post_start is being

executed.

 UVM_STOPPED: The sequence has been forcibly ended by issuing a uvm_sequence_base::kill on the

sequence.

 UVM_FINISHED: The sequence is completely finished executing.

15.3.6 uvm_phase_type

The typedef uvm_phase_type shall define an enumeration list which defines the phase type.

 UVM_PHASE_IMP: The phase object is used to traverse the component hierarchy and call the component

phase method as well as the callbacks phase_started and phase_ended.

 UVM_PHASE_NODE: The object represents a simple node instance in the graph. These nodes will

contain a reference to their corresponding IMP object.

 UVM_PHASE_SCHEDULE: The object represents a portion of the phasing graph, typically consisting of

several NODE types, in series, parallel, or both.

 UVM_PHASE_TERMINAL: This internal object serves as the termination NODE for a SCHEDULE

phase object.

 UVM_PHASE_DOMAIN: This object represents an entire graph segment that executes in parallel with

the run phase. Domains may define any network of NODEs and SCHEDULEs. The built-in domain called

UVM-SystemC Language Reference Manual – DRAFT Page 230

uvm consists of a single schedule of all the run-time phases, starting with pre_reset and ending with

post_shutdown.

Page 231 UVM-SystemC Language Reference Manual – DRAFT

Annex A. UVM-SystemVerilog features not included in

UVM-SystemC

(Informative)

The following is a list of major UVM-SystemVerilog features not available in UVM-SystemC. However, future

UVM-SystemC implementations may address these topics. Note that this is not an exhaustive list.

A.1 No field macros

UVM in SystemVerilog provides field macros to set up automation of fields inside a uvm_object. The automation

of the fields means that the fields automatically get an implementation for all of the mandatory member functions of

uvm_object. It is recommended not to use these field automation macros, because their implementation has impact

on simulation performance and gives intransparent results for e.g. debugging. Therefore UVM-SystemC will not

implement these field automation macros. As a consequence, an application needs to implement each of the

mandatory member functions of uvm_object: do_print, do_pack, do_unpack, do_copy, and do_compare.

A.2 No automated configuration

UVM-SystemC does not define automated configuration through the member function apply_config_settings. All

configuration needs to be explicitly retrieved using get_config_int, get_config_string, or get_config_object.

A.3 No transaction recording

UVM-SystemC does not define a transaction recording mechanism aligned with that of UVM-SystemVerilog. An

application may use the existing transaction recording mechanism available in the SystemC Verification library

(SCV) where appropriate.

A.4 No register abstraction layer

UVM-SystemC does not define any register layer classes to create registers and memories.

A.5 No constraint randomization and coverage classes

SystemVerilog offers the API for constraint randomization and coverage classes. Classes for constraint

randomization of parameters and usage of coverage classes are not yet available in UVM-SystemC. Future

extensions may integrate the SystemC Verification library (SCV) or CRAVE library to introduce randomization and

a constraint solver.

A.6 No assertions

Although not part of the UVM, but native functionality in SystemVerilog are assertions. These elements are not part

of the SystemC language and therefore not supported in the UVM-SystemC implementation.

UVM-SystemC Language Reference Manual – DRAFT Page 232

Annex B. Renamed functions UVM-SystemC versus

UVM-SystemVerilog

(Informative)

Classes or member functions marked with symbol are renamed in UVM-SystemC compared to the UVM 1.1

standard implemented in SystemVerilog, due to the incompatibility in case of reserved keywords in C/C++ or an

inappropriate name in the context of SystemC base class or member function definitions. Table C.1 below shows the

renamed classes and member functions and also the reference to the original UVM 1.1 name is given.

Class name in

UVM-SystemC

Class name

in UVM-

SystemVerilog

Member

function in

UVM-SystemC

Method

in UVM-

SystemVerilog

Section

uvm_process_phase uvm_task_phase 2.11

uvm_factory do_register register 6.4.2.1

uvm_phase exec_process exec_task 11.1.4.2

uvm_callbacks do_delete delete 11.9.5.3

uvm_report_catcher do_catch catch 12.4.6.1

Page 233 UVM-SystemC Language Reference Manual – DRAFT

Annex C. Terminology

(Informative)

C.1 Definitions

agent: An abstract container used to emulate and verify DUT devices; agents encapsulate a driver, sequencer, and

monitor.

application: A C++ program, written by an end user.

blocking: An interface where tasks block execution until they complete. See also: non blocking.

callback: A member function overridden within a class in the component hierarchy that is called back by the kernel

at certain fixed points during elaboration and simulation. UVM defines pre-defined callback functions as part of the

phasing mechanism, such as end_of_elaboration_phase, build_phase, connect_phase, run_phase, etc. In

addition, UVM supports the creation of user-defined callback classes and functions.

child:: An instance that is within a given component. Component A is a child of component B if component A is

within component B. See also: parent.

component: A piece of VIP that provides functionality and interfaces. Also referred to as a transactor.

configuration: Ability to change the properties of components or objects independent from the component

hierarchy and composition. Configuration parameters can be stored in and retrieved from a central database, which

can be accessed at any place in the verification environment, and at any time during the simulation.

consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting with the

device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides the implementation of methods used for

communication. Used in UVM to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time, the exact

specification of the object to be created.

fifo: An instance of a primitive channel that models a first-in-first-out buffer.

foreign methodology: A verification methodology that is different from the methodology being used for the

majority of the verification environment.

generator: A verification component that provides transactions to another component. Also referred to as a

producer.

implementation: A specific concrete implementation of the UVM-SystemC class library as defined in this standard.

It only implements the public shell which need be exposed to the application (for example, parts may be

precompiled and distributed as object code by a tool vendor). See also: kernel.

UVM-SystemC Language Reference Manual – DRAFT Page 234

interface: A class derived, directly or indirectly, from class sc_core::sc_interface. An interface proper is an

interface, and in the object-oriented sense a channel is also an interface. However, a channel is not an interface

proper.

interface proper: An abstract class derived, directly or indirectly, from class sc_core::sc_interface but not derived

from class sc_core::sc_object. An interface proper declares the set of methods to be implemented within a channel

and to be called through a port. An interface proper contains pure virtual function declarations, but typically it

contains no function definitions and no data members.

kernel: The core of any UVM-SystemC implementation including the underlying elaboration and simulation

engines. The kernel honors the semantics defined by this standard but may also contain implementation-specific

functionality outside the scope of this standard. See also: implementation.

master: This term has no precise technical definition in this standard, but it is used to mean a module or port that

can take control of a memory-mapped bus in order to initiate bus traffic, or a component that can execute an

autonomous software thread and thus initiate other system activity. Generally, a bus master would be an initiator.

member function: A function declared within a class definition, excluding friend functions. Outside of a

constructor or member function of the class or of any derived class, a non-static member function can only be

accessed using the dot . and arrow -> operators. See also: method.

method : A function that implements the behavior of a class. This term is synonymous with the C++ term member

function. In UVM-SystemC, the term method is used in the context of an interface method call. Throughout this

standard, the term member function is used when defining C++ classes (for conformance to the C++ standard), and

the term method is used in more informal contexts and when discussing interface method calls.

monitor: A passive entity that samples DUT signals, but does not drive them.

non blocking: A call that returns immediately. See also: blocking.

parent:: The inverse relationship to child. Component A is the parent of component B if component B is a child of

component A.

parent sequence: A sequence which contains one or more child sequences.

port: A TLM interface that defines the set of methods used for communication. Used in UVM to connect to an

export.

primary (host) methodology: The methodology that manages the top-level operation of the verification

environment and with which the user/integrator is presumably more familiar.

process: A process instance belongs to an implementation-defined class derived from class uvm_object. Each

process instance has an associated function that represents the behavior of the process. A process may be a static or a

dynamic (e.g., spawned) process. See also: spawned process.

recipient: The component that implements a callback or function that receives and processes a transaction. See also:

sender.

request: A transaction that provides information to initiate the processing of a particular operation.

response: A transaction that provides information about the completion or status of a particular operation.

root sequence: A sequence which has no parent sequence.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed

response against the predicted response. Usually refers to the entire dynamic response-checking structure.

Page 235 UVM-SystemC Language Reference Manual – DRAFT

sender: The component that implements a callback or function that initiates the transmission of a transaction. See

also: recipient.

sequence: A UVM object that procedurally defines a set of transactions to be executed and/or controls the execution

of other sequences.

sequencer: An advanced stimulus generator which executes sequences that define the transactions provided to the

driver for execution.

spawned process: A process instance that is dynamically created by calling the SystemC function

sc_core::sc_spawn. See also: process.

test: Specific customization of an environment to exercise required functionality of the DUT.

testbench: The structural definition of a set of verification components used to verify a DUT. Also referred to as a

verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more components.

transactor: See component.

verification environment: See environment.

virtual sequence: A conceptual term for a sequence that controls the execution of sequences on other sequencers.

C.2 Acronyms and Abbreviations

AMS analog mixed signal

API application programming interface

CDV coverage-driven verification

CBCL common base class library

CLI command line interface

DUT device under test

DUV device under verification

EDA electronic design automation

FIFO first-in, first-out

HDL hardware description language

HVL high-level verification language

IP intellectual property

OSCI Open SystemC Initiative

SC SystemC

SCV SystemC Verification library

SV SystemVerilog

TLM transaction level modeling

UVC UVM Verification Component

UVM-SystemC Language Reference Manual – DRAFT Page 236

UVM Universal Verification Methodology

VIP verification intellectual property

Page 237 UVM-SystemC Language Reference Manual – DRAFT

Index

~

~uvm_component_name, destructor, 38

A

abstract, data member

class uvm_packer, 45

action configuration

class uvm_report_object, 183

add, member function

class uvm_callbacks, 174

class uvm_phase, 157

add_by_name, member function

class uvm_callbacks, 175

adjust_name, member function

class uvm_printer, 50

agent. definition, 239

all_dropped, member function

class uvm_component, 90

class uvm_objection, 169

analysis_export, export

class tuvm_subscriber, 102

application, definition, 239

B

big_endian, data member

class uvm_packer, 45

blocking, definition, 239

body, member function

class uvm_sequence_base, 121

build_phase, member function

class uvm_component, 83

C

callback hooks

class uvm_objection, 168

callback macros, 205

callback, definition, 239

callback_mode, member function

class uvm_callback, 171

callbacks

class uvm_phase, 156

can_get, member function

class uvm_nonblocking_get_peek_port, 218

class uvm_nonblocking_get_port, 215

can_peek, member function

class uvm_nonblocking_get_peek_port, 219

class uvm_nonblocking_peek_port, 217

can_put, member function

class uvm_nonblocking_put_port, 214

check_phase, member function

class uvm_component, 87

child, definition, 239

clear, member function

class uvm_objection, 166

clear_response_queue, member function

class uvm_sequence_base, 127

clone, member function

class uvm_object, 27

compare, member function

class uvm_object, 29

compare_field, member function

class uvm_comparer, 55

compare_field_int, member function

class uvm_comparer, 55

compare_field_real, member function

class uvm_comparer, 56

compare_object, member function

class uvm_comparer, 56

compare_string, member function

class uvm_comparer, 56

compare_type, member function

class uvm_comparer, 59

comparing

class uvm_object, 29

component and object registration, 201

component, definition, 239

compose_message, member function

class uvm_report_server, 193

configuration, definition, 239

configuration_phase, member function

class uvm_component, 85

connect, member function

class uvm_analysis_export, 221

class uvm_analysis_imp, 223

class uvm_analysis_port, 220

class uvm_port_base, 36

connect_phase, member function

UVM-SystemC Language Reference Manual – DRAFT Page 238

class uvm_component, 83

construction

class uvm_phase, 155

construction interface

class uvm_component, 79

constructor

class uvm_analysis_export, 221

class uvm_analysis_imp, 222

class uvm_analysis_port, 219

class uvm_blocking_get_peek_port, 212

class uvm_blocking_get_port, 209

class uvm_blocking_peek_port, 211

class uvm_blocking_put_port, 208

class uvm_nonblocking_get_port, 215

class uvm_nonblocking_peek_port, 216, 218

class uvm_nonblocking_put_port, 214

class uvm_report_catcher, 196

class uvm_report_handler, 187

class uvm_report_server, 190

class uvm_seq_item_pull_export, 231

class uvm_seq_item_pull_imp, 232

class uvm_seq_item_pull_port, 230

class uvm_tlm_req_rsp_channel, 226

constructors

class uvm_report_object, 180

consumer, definition, 239

convert2string, member function

class uvm_object, 27

copy, member function

class uvm_object, 28

copying

class uvm_object, 28

create, member function

class uvm_component_registry, 66

class uvm_object, 26

class uvm_object_registry, 64

create_component, member function

class uvm_component, 91

class uvm_component_registry, 66

class uvm_object_wrapper, 62

create_component_by_name, member function

class uvm_factory, 72

create_component_by_type, member function

class uvm_factory, 72

create_item, member function

class uvm_sequence_base, 124

create_object, member function

class uvm_component, 91

class uvm_object_registry, 63

class uvm_object_wrapper, 62

create_object_by_name, member function

class uvm_factory, 71

create_object_by_type, member function

class uvm_factory, 71

creation

class uvm_factory, 71

class uvm_object, 26

current_grabber, member function

class uvm_sequencer_base, 107

D

debug

class uvm_factory, 73

class uvm_resource_pool, 147

debug_create_by_name, member function

class uvm_factory, 73

debug_create_by_type, member function

class uvm_factory, 73

define_domain, member function

class uvm_component, 88

delete_by_name, member function

class uvm_callbacks, 175

die, member function

class uvm_root, 33

display, member function

class uvm_callbacks, 176

display_objections, member function

class uvm_objection, 170

do_catch, member function

class uvm_report_catcher, 199

do_compare, member function

class uvm_object, 29

do_copy, member function

class uvm_object, 28

do_delete, member function

class uvm_callbacks, 175

do_kill, member function

class uvm_sequence_base, 124

do_pack, member function

class uvm_object, 30

do_print, member function

class uvm_object, 27

class uvm_resource_base, 141

Page 239 UVM-SystemC Language Reference Manual – DRAFT

do_record, member function

class uvm_object, 28

do_register, member function

class uvm_factory, 69

do_unpack, member function

class uvm_object, 31

driver, definition, 239

drop_objection, member function

class uvm_objection, 167

class uvm_phase, 158

dropped, member function

class uvm_component, 90

class uvm_objection, 168

dump, member function

class uvm_resource_pool, 148

dump_server_state, member function

class uvm_report_server, 194

E

emit, member function

class uvm_line_printer, 53

class uvm_printer, 50

class uvm_table_printer, 52

class uvm_tree_printer, 53

enable_print_topology, member function

class uvm_root, 34

end_of_elaboration_phase, member function

class uvm_component, 83

environment, definition, 239

exec_func, member function

class uvm_phase, 156

exec_process, member function

class uvm_phase, 156

exec_task. See exec_process

execute, member function

class uvm_bottomup_phase, 162

class uvm_process_phase, 164

class uvm_topdown_phase, 163

execute_item, member function

class uvm_sequencer_base, 105

exists, member function

uvm_config_db, 132

export, definition, 239

extract_phase, member function

class uvm_component, 87

F

factory

class uvm_component, 91

factory method, definition, 239

fifo, definition, 239

file configuration

class uvm_report_object, 184

final_phase, member function

class uvm_component, 87

find, member function

class uvm_phase, 156

class uvm_root, 33

find_all, member function

class uvm_root, 34

find_by_name, member function

class uvm_phase, 156

find_override_by_name, member function

class uvm_factory, 73

find_override_by_type, member function

class uvm_factory, 73

find_unused_resources, member function

class uvm_resource_pool, 147

finish_item, member function

class uvm_sequence_base, 125

finish_on_completion, member function

class uvm_root, 33

first, member function

class uvm_callback_iter, 172

foreign methodology, definition, 239

format_action, member function

class uvm_report_handler, 189

format_footer, member function

class uvm_printer, 50

format_header, member function

class uvm_printer, 50

format_row, member function

class uvm_printer, 50

G

generator, definition, 239

get, member function

class uvm_blocking_get_peek_port, 212

class uvm_blocking_get_port, 210

class uvm_component_registry, 66

class uvm_object_registry, 63

UVM-SystemC Language Reference Manual – DRAFT Page 240

class uvm_resource_pool, 144

class uvm_sequencer, 111

class uvm_sqr_if_base, 228

uvm_config_db, 131

get_action, member function

class uvm_report_catcher, 197

class uvm_report_handler, 188

get_by_name, member function

class uvm_resource, 150

class uvm_resource_db, 134

class uvm_resource_pool, 145

get_by_type, member function

class uvm_resource, 150

class uvm_resource_db, 134

class uvm_resource_pool, 146

get_cb, member function

class uvm_callback_iter, 173

get_child, member function

class uvm_component, 80

get_children, member function

class uvm_component, 80

get_client, member function

class uvm_report_catcher, 196

get_common_domain, member function

class uvm_domain, 160

get_current_item, member function

class uvm_sequencer_param_base, 109

uvm_sequence, 129

get_depth, member function

class uvm_component, 81

class uvm_sequence_item, 117

get_domain, member function

class uvm_component, 88

class uvm_phase, 158

get_domain_name, member function

class uvm_phase, 158

get_domains, member function

class uvm_domain, 160

get_drain_time, member function

class uvm_objection, 169

get_field_attribute, member function

class uvm_comparer, 58

get_file_handle, member function

class uvm_report_handler, 188

get_first, member function

class uvm_callbacks, 175

get_first_child, member function

class uvm_component, 80

get_fname, member function

class uvm_report_catcher, 197

get_full_name, member function

class uvm_component, 80

class uvm_object, 25

class uvm_phase, 157

class uvm_port_base, 36

get_highest_precedence, member function

class uvm_resource, 151

class uvm_resource_pool, 145

get_id, member function

class uvm_report_catcher, 197

get_id_count, member function

class uvm_report_server, 193

get_imp, member function

class uvm_phase, 158

get_inst_count, member function

class uvm_object, 26

get_inst_id, member function

class uvm_object, 25

get_is_active, member function

class uvm_agent, 99

get_jump_target, member function

class uvm_phase, 159

get_last, member function

class uvm_callbacks, 176

get_line, member function

class uvm_report_catcher, 197

get_max_messages, member function

class uvm_comparer, 57

get_max_quit_count, member function

class uvm_report_server, 191

get_message, member function

class uvm_report_catcher, 197

get_miscompare_string, member function

class uvm_comparer, 58

get_name, member function

class uvm_object, 25

class uvm_port_base, 36

get_next, member function

class uvm_callbacks, 176

get_next_child, member function

class uvm_component, 80

get_next_item, member function

class uvm_sequencer, 111

class uvm_sqr_if_base, 227

Page 241 UVM-SystemC Language Reference Manual – DRAFT

get_num_children, member function

class uvm_component, 80

get_object_type, member function

class uvm_object, 26

get_objection, member function

class uvm_phase, 158

get_objection_count, member function

class uvm_objection, 169

get_objection_total, member function

class uvm_objection, 169

get_objectors, member function

class uvm_objection, 169

get_packet_size, member function

class uvm_packer, 44

get_parent, member function

class uvm_component, 79

class uvm_phase, 157

class uvm_port_base, 36

get_parent_sequence, member function

class uvm_sequence_item, 116

get_peek_request_export, export

class uvm_tlm_req_rsp_channel, 225

get_peek_response_export, export

class uvm_tlm_req_rsp_channel, 226

get_phase_type, member function

class uvm_phase, 155

get_policy, member function

class uvm_comparer, 57

get_prev, member function

class uvm_callbacks, 176

get_priority, member function

class uvm_sequence_base, 122

get_quit_count, member function

class uvm_report_server, 191

get_report_action, member function

class uvm_report_object, 183

get_report_catcher, member function

class uvm_report_catcher, 198

get_report_file_handle, member function

class uvm_report_object, 184

get_report_handler, member function

class uvm_report_object, 186

get_report_verbosity_level, member function

class uvm_report_object, 182

get_request_export, export

class uvm_tlm_req_rsp_channel, 225

get_response, member function

uvm_sequence, 129

get_response_export, export

class uvm_tlm_req_rsp_channel, 225

get_response_queue_depth, member function

class uvm_sequence_base, 127

get_response_queue_error_report_disabled, member

function

class uvm_sequence_base, 127

get_result, member function

class uvm_comparer, 59

get_root_sequence, member function

class uvm_sequence_item, 117

get_root_sequence_name, member function

class uvm_sequence_item, 117

get_run_count, member function

class uvm_phase, 155

get_schedule, member function

class uvm_phase, 157

get_schedule_name, member function

class uvm_phase, 157

get_scope, member function

class uvm_resource_base, 141

get_sequence_path, member function

class uvm_sequence_item, 117

get_sequence_state, member function

class uvm_sequence_base, 120

get_sequencer, member function

class uvm_sequence_item, 116

get_server, member function

class uvm_report_server, 191

get_severity, member function

class uvm_comparer, 58

class uvm_report_catcher, 197

get_severity_count, member function

class uvm_report_server, 192

get_state, member function

class uvm_phase, 155

get_transaction_id, member function

class uvm_transaction, 114

get_type, member function

class uvm_object, 26

class uvm_resource, 149

get_type_handle, member function

class uvm_resource, 149

class uvm_resource_base, 140

get_type_name, member function

class uvm_agent, 98

UVM-SystemC Language Reference Manual – DRAFT Page 242

class uvm_analysis_export, 221

class uvm_analysis_imp, 222

class uvm_analysis_port, 220

class uvm_blocking_get_peek_port, 212

class uvm_blocking_get_port, 210

class uvm_blocking_peek_port, 211

class uvm_blocking_put_port, 208

class uvm_callback, 171

class uvm_component_registry, 66

class uvm_driver, 97

class uvm_env, 99

class uvm_monitor, 98

class uvm_nonblocking_get_peek_port, 218

class uvm_nonblocking_get_port, 215

class uvm_nonblocking_peek_port, 216

class uvm_nonblocking_put_port, 214

class uvm_object, 26

class uvm_object_registry, 63

class uvm_object_wrapper, 62

class uvm_port_base, 36

class uvm_scoreboard, 101

class uvm_seq_item_pull_export, 231

class uvm_seq_item_pull_imp, 232

class uvm_seq_item_pull_port, 230

class uvm_subscriber, 102

class uvm_test, 100

get_use_response_handler, member function

class uvm_sequence_base, 126

get_use_sequence_info, member function

class uvm_sequence_item, 116

get_uvm_domain, member function

class uvm_domain, 161

get_uvm_phases, member function

class uvm_domain, 161

get_uvm_schedule, member function

class uvm_domain, 160

get_verbosity, member function

class uvm_comparer, 58

class uvm_report_catcher, 197

get_verbosity_level, member function

class uvm_report_handler, 188

grab, member function

class uvm_sequence_base, 123

class uvm_sequencer_base, 106

H

has_child, member function

class uvm_component, 80

has_do_available, member function

class uvm_sequencer_base, 107

has_lock, member function

class uvm_sequence_base, 124

class uvm_sequencer_base, 106

hierarchical reporting interface

class uvm_component, 93

hierarchy interface

class uvm_component, 79

host methodology, definition, 240

I

identification

class uvm_object, 25

implementation, definition, 240

incr_id_count, member function

class uvm_report_server, 193

incr_quit_count, member function

class uvm_report_server, 191

incr_severity_count, member function

class uvm_report_server, 192

init_access_record, member function

class uvm_resource_base, 142

interface proper, definition, 240

interface, definition, 240

is, member function

class uvm_phase, 156

is_after, member function

class uvm_phase, 156

is_auditing, member function

class uvm_resource_options, 138

is_before, member function

class uvm_phase, 156

is_blocked, member function

class uvm_sequence_base, 124

class uvm_sequencer_base, 106

is_child, member function

class uvm_sequencer_base, 104

is_enabled, member function

class uvm_callback, 171

is_grabbed, member function

class uvm_sequencer_base, 107

Page 243 UVM-SystemC Language Reference Manual – DRAFT

is_item, member function

class uvm_sequence_item, 117

is_null, member function

class uvm_packer, 43

is_quit_count_reached, member function

class uvm_report_server, 192

is_read_only, member function

class uvm_resource_base, 140

is_relevant, member function

class uvm_sequence_base, 122

is_tracing, member function

class uvm_resource_db_options, 137

issue, member function

class uvm_report_catcher, 200

item_done, member function

class uvm_sequencer, 111

class uvm_sqr_if_base, 228

J

jump, member function

class uvm_phase, 159

jumping

class uvm_phase, 159

K

kernel, definition, 240

kill, member function

class uvm_sequence_base, 124

knobs, data member

class uvm_printer, 51

L

last, member function

class uvm_callback_iter, 172

lock, member function

class uvm_sequence_base, 123

class uvm_sequencer_base, 106

lookup

class uvm_resource_pool, 145

lookup, member function

class uvm_component, 81

lookup_name, member function

class uvm_resource_pool, 145

lookup_regex, member function

class uvm_resource_pool, 146

lookup_regex_names, member function

class uvm_resource_pool, 146

lookup_scope, member function

class uvm_resource_pool, 146

lookup_type, member function

class uvm_resource_pool, 146

M

macros

class uvm_component, 95

class uvm_object, 31

main_phase, member function

class uvm_component, 85

master, definition, 240

master_export, export

class uvm_tlm_req_rsp_channel, 226

match_scope, member function

class uvm_resource_base, 141

member function, definition, 240

method, definition, 240

mid_do, member function

class uvm_sequence_base, 121

monitor, definition, 240

N

next, member function

class uvm_callback_iter, 172

non blocking, definition, 240

notification

class uvm_resource_base, 140

O

objection control

class uvm_objection, 166

objection interface

class uvm_component, 90

objection status

class uvm_objection, 169

operator const char*(), operator

class uvm_component_name, 38

override configuration

class uvm_report_object, 185

override_t, enum

class uvm_resource_types, 151

UVM-SystemC Language Reference Manual – DRAFT Page 244

P

pack, member function

class uvm_object, 29

pack_bytes, member function

class uvm_object, 29

pack_field, member function

class uvm_packer, 42

pack_field_int, member function

class uvm_packer, 42

pack_ints, member function

class uvm_object, 30

pack_object, member function

class uvm_packer, 42

pack_real, member function

class uvm_packer, 42

pack_string, member function

class uvm_packer, 42

pack_time, member function

class uvm_packer, 42

packing

class uvm_object, 29

parent sequence, definition, 240

parent, definition, 240

peek, member function

class uvm_blocking_get_peek_port, 213

class uvm_blocking_peek_port, 211

class uvm_sequencer, 112

class uvm_sqr_if_base, 229

phase_ended, member function

class uvm_component, 88

phase_ready_to_end, member function

class uvm_component, 87

phase_started, member function

class uvm_component, 87

phasing interface

class uvm_component, 81

physical, data member

class uvm_packer, 44

port, definition, 240

post_body, member function

class uvm_sequence_base, 122

post_configuration_phase, member function

class uvm_component, 85

post_do, member function

class uvm_sequence_base, 121

post_main_phase, member function

class uvm_component, 86

post_reset_phase, member function

class uvm_component, 84

post_shutdown_phase, member function

class uvm_component, 86

post_start, member function

class uvm_sequence_base, 122

post-run phases

class uvm_component, 82

pre_abort, member function

class uvm_component, 95

pre_body, member function

class uvm_sequence_base, 121

pre_configuration_phase, member function

class uvm_component, 84

pre_do, member function

class uvm_sequence_base, 121

pre_main_phase, member function

class uvm_component, 85

pre_reset_phase, member function

class uvm_component, 84

pre_shutdown_phase, member function

class uvm_component, 86

pre_start, member function

class uvm_sequence_base, 121

pre-run phases

class uvm_component, 81

prev, member function

class uvm_callback_iter, 172

primary methodology, definition, 240

print, member function

class uvm_factory, 74

class uvm_object, 27

print_accessors, member function

class uvm_resource_base, 142

print_array_footer, member function

class uvm_printer, 51

print_array_header, member function

class uvm_printer, 51

print_array_range, member function

class uvm_printer, 51

print_catcher, member function

class uvm_report_catcher, 198

print_config, member function

class uvm_component, 89

print_config_matches, member function

class uvm_component, 90

Page 245 UVM-SystemC Language Reference Manual – DRAFT

print_config_with_audit, member function

class uvm_component, 89

print_double, member function

class uvm_printer, 48

print_field, member function

class uvm_printer, 48

print_field_int, member function

class uvm_printer, 48

print_generic, member function

class uvm_printer, 50

print_msg, member function

class uvm_comparer, 57

print_object, member function

class uvm_printer, 49

print_object_header, member function

class uvm_printer, 49

print_override_info, member function

class uvm_component, 92

print_real, member function

class uvm_printer, 48

print_resources, member function

class uvm_resource_pool, 147

print_string, member function

class uvm_printer, 49

print_time, member function

class uvm_printer, 49

print_topology, member function

class uvm_root, 34

printing

class uvm_object, 27

priority

class uvm_resource, 150

class uvm_resource_base, 141

priority_t, enum

class uvm_resource_types, 151

process control interface

class uvm_component, 88

process, definition, 240

process_report, member function

class uvm_report_server, 193

put, member function

class uvm_blocking_put_port, 209

class uvm_sequencer, 112

class uvm_sqr_if_base, 229

put_request_export, export

class uvm_tlm_req_rsp_channel, 225

put_response_export, export

class uvm_tlm_req_rsp_channel, 225

R

raise_objection, member function

class uvm_objection, 167

class uvm_phase, 158

raised, member function

class uvm_component, 90

class uvm_objection, 168

read only interface

class uvm_resource_base, 140

read, member function

class uvm_resource, 150

read/write interface

class uvm_resource, 150

read_by_name, member function

class uvm_resource_db, 135

read_by_type, member function

class uvm_resource_db, 135

recipient, definition, 240

record, member function

class uvm_object, 28

record_read_access, member function

class uvm_resource_base, 141

record_write_access, member function

class uvm_resource_base, 141

recording

class uvm_object, 28

register. See do_register

registering types

class uvm_factory, 69

report handler configuration

class uvm_report_object, 186

report, member function

class uvm_report_handler, 188

report_phase, member function

class uvm_component, 87

report_summarize, member function

class uvm_report_object, 194

reporting

class uvm_report_object, 180

reporting macros, 202

request, definition, 241

request_ap, port

class uvm_tlm_req_rsp_channel, 224

reset_phase, member function

UVM-SystemC Language Reference Manual – DRAFT Page 246

class uvm_component, 84

reset_quit_count, member function

class uvm_report_server, 192

reset_report_handler, member function

class uvm_report_object, 186

reset_severity_counts, member function

class uvm_report_server, 192

resource database interface

class uvm_resource_base, 140

response interface

class uvm_sequence_base, 126

response, definition, 241

response_ap, port

class uvm_tlm_req_rsp_channel, 224

response_handler, member function

class uvm_sequence_base, 126

resume, member function

class uvm_component, 89

root sequence, definition, 241

rsp_port, port

class uvm_driver, 97

rsrc_q_t, typedef

class uvm_resource_types, 151

run_phase, member function

class uvm_component, 83

run_test, global function, 22

run_test, member function

class uvm_root, 32

run-time phases

class uvm_component, 82

S

schedule

class uvm_phase, 157

scope interface

class uvm_resource_base, 140

scoreboard, definition, 241

send_request, member function

class uvm_sequencer_base, 108

class uvm_sequencer_param_base, 109

uvm_sequence, 128

sender, definition, 241

seq_item_export, data member

class uvm_sequencer, 111

seq_item_port, port

class uvm_driver, 96

sequence control

class uvm_sequence_base, 122

sequence execution

class uvm_sequence_base, 120

sequence execution macros, 203

sequence item execution

class uvm_sequence_base, 124

sequence, definition, 241

sequencer, definition, 241

set

class uvm_resource_pool, 144

set priority

class uvm_resource_pool, 147

set, member function

class uvm_resource, 149

class uvm_resource_db, 135

class uvm_resource_pool, 144

uvm_config_db, 131

set/get interface

class uvm_resource, 149

set_action, member function

class uvm_report_catcher, 198

set_anonymous, member function

class uvm_resource_db, 135

set_arbitration, member function

class uvm_sequencer_base, 107, 108

set_default, member function

class uvm_resource_db, 134

set_depth, member function

class uvm_sequence_item, 116

set_domain, member function

class uvm_component, 88

set_drain_time, member function

class uvm_objection, 168

set_field_attribute, member function

class uvm_comparer, 58

set_id, member function

class uvm_report_catcher, 198

set_id_count, member function

class uvm_report_server, 192

set_id_info, member function

class uvm_sequence_item, 116

set_inst_override, member function

class uvm_component, 92

class uvm_component_registry, 67

class uvm_object_registry, 64

set_inst_override_by_name, member function

Page 247 UVM-SystemC Language Reference Manual – DRAFT

class uvm_factory, 70

set_inst_override_by_type, member function

class uvm_component, 91

class uvm_factory, 69

set_max_messages, member function

class uvm_comparer, 57

set_max_quit_count, member function

class uvm_report_server, 191

set_message, member function

class uvm_report_catcher, 198

set_miscompare_string, member function

class uvm_comparer, 58

set_name, member function

class uvm_object, 25

set_name_override, member function

class uvm_resource_pool, 144

set_override, member function

class uvm_resource, 149

class uvm_resource_pool, 144

set_parent_sequence, member function

class uvm_sequence_item, 116

set_phase_imp, member function

class uvm_component, 88

set_policy, member function

class uvm_comparer, 57

set_priority, member function

class uvm_resource, 150

class uvm_resource_base, 141

class uvm_resource_pool, 147

class uvm_sequence_base, 122

set_priority_name, member function

class uvm_resource_pool, 147

set_priority_type, member function

class uvm_resource_pool, 147

set_quit_count, member function

class uvm_report_server, 191

set_read_only, member function

class uvm_resource_base, 140

set_report_default_file, member function

class uvm_report_object, 184

set_report_default_file_hier, member function

class uvm_component, 94

set_report_handler, member function

class uvm_report_object, 186

set_report_id_action, member function

class uvm_report_object, 184

set_report_id_action_hier, member function

class uvm_component, 94

set_report_id_file, member function

class uvm_report_object, 184

set_report_id_file_hier, member function

class uvm_component, 94

set_report_id_verbosity, member function

class uvm_report_object, 183

set_report_id_verbosity_hier, member function

class uvm_component, 93

set_report_severity_action, member function

class uvm_report_object, 183

set_report_severity_action_hier, member function

class uvm_component, 93

set_report_severity_file, member function

class uvm_report_object, 185

set_report_severity_file_hier, member function

class uvm_component, 94

set_report_severity_id_action, member function

class uvm_report_object, 184

set_report_severity_id_action_hier, member function

class uvm_component, 94

set_report_severity_id_file, member function

class uvm_report_object, 185

set_report_severity_id_file_hier, member function

class uvm_component, 95

set_report_severity_id_override, member function

class uvm_report_object, 185

set_report_severity_id_verbosity, member function

class uvm_report_object, 183

set_report_severity_id_verbosity_hier, member

function

class uvm_component, 93

set_report_severity_override, member function

class uvm_report_object, 185

set_report_verbosity_level, member function

class uvm_report_object, 183

set_report_verbosity_level_hier, member function

class uvm_component, 95

set_request, member function

class uvm_sequence_base, 125

set_response_queue_depth, member function

class uvm_sequence_base, 127

set_response_queue_error_report_disabled, member

function

class uvm_sequence_base, 126

set_scope, member function

class uvm_resource_base, 140

UVM-SystemC Language Reference Manual – DRAFT Page 248

set_sequencer, member function

class uvm_sequence_item, 116

set_server, member function

class uvm_report_server, 190

set_severity, member function

class uvm_comparer, 58

class uvm_report_catcher, 198

set_severity_count, member function

class uvm_report_server, 192

set_timeout, member function

class uvm_root, 33

set_transaction_id, member function

class uvm_transaction, 114

set_type_override, member function

class uvm_component, 92

class uvm_component_registry, 66

class uvm_object_registry, 64

class uvm_resource_pool, 145

set_type_override_by_name, member function

class uvm_factory, 71

set_type_override_by_type, member function

class uvm_component, 91

class uvm_factory, 70

set_use_sequence_info, member function

class uvm_sequence_item, 115

set_verbosity, member function

class uvm_comparer, 57

class uvm_report_catcher, 198

shutdown_phase, member function

class uvm_component, 86

slave_export, export

class uvm_tlm_req_rsp_channel, 226

sort_by_precedence, member function

class uvm_resource_pool, 145

spawned process, definition, 241

spell_check, member function

class uvm_resource_pool, 144

sprint, member function

class uvm_object, 27

start, member function

class uvm_sequence_base, 120

start_item, member function

class uvm_sequence_base, 125

start_of_simulation_phase, member function

class uvm_component, 83

start_phase_sequence, member function

class uvm_sequencer_base, 105

starting_phase, member function

class uvm_sequence_base, 127

state

class uvm_phase, 155

stop_sequences, member function

class uvm_sequencer, 112

class uvm_sequencer_base, 107

summarize_report_catcher, member function

class uvm_report_catcher, 200

suspend, member function

class uvm_component, 89

sync, member function

class uvm_phase, 158

synchronization

class uvm_phase, 158

T

template parameter CB

class uvm_callback_iter, 172

class uvm_callbacks, 174

template parameter IF

class uvm_ port_base, 35

template parameter T

class uvm_analysis_export, 221

class uvm_analysis_imp, 222

class uvm_analysis_port, 219

class uvm_blocking_get_peek_port, 212

class uvm_blocking_get_port, 209

class uvm_blocking_peek_port, 211

class uvm_blocking_put_port, 208

class uvm_callback_iter, 172

class uvm_callbacks, 174

class uvm_component_registry, 65

class uvm_config_db, 131

class uvm_nonblocking_get_peek_port, 218

class uvm_nonblocking_get_port, 215

class uvm_nonblocking_peek_port, 216

class uvm_nonblocking_put_port, 213

class uvm_object_registry, 63

class uvm_resource, 149

class uvm_resource_db, 134

template parameters

class uvm_driver, 96

class uvm_seq_item_pull_export, 231

class uvm_seq_item_pull_imp, 232

class uvm_seq_item_pull_port, 230

Page 249 UVM-SystemC Language Reference Manual – DRAFT

class uvm_sequence, 128

class uvm_sequencer, 111

class uvm_sequencer_param_base, 109

class uvm_sqr_if_base, 227

class uvm_tlm_req_rsp_channel, 224

test, definition, 241

testbench, definition, 241

trace_mode, member function

class uvm_objection, 166

transaction, definition, 241

transactor. See component

traverse, member function

class uvm_bottomup_phase, 162

class uvm_process_phase, 164

class uvm_topdown_phase, 163

try_get, member function

class uvm_nonblocking_get_peek_port, 218

class uvm_nonblocking_get_port, 215

try_next_item, member function

class uvm_sequencer, 111

class uvm_sqr_if_base, 228

try_peek, member function

class uvm_nonblocking_get_peek_port, 218

class uvm_nonblocking_peek_port, 217

try_put, member function

class uvm_nonblocking_put_port, 214

turn_off_auditing, member function

class uvm_resource_options, 138

turn_off_tracing, member function

class uvm_resource_db_options, 137

turn_on_auditing, member function

class uvm_resource_options, 138

turn_on_tracing, member function

class uvm_resource_db_options, 137

type and instance overrides types

class uvm_factory, 69

type interface

class uvm_resource, 149

U

ungrab, member function

class uvm_sequence_base, 123

class uvm_sequencer_base, 106

unlock, member function

class uvm_sequence_base, 123

class uvm_sequencer_base, 106

unpack, member function

class uvm_object, 30

unpack_bytes, member function

class uvm_object, 30

unpack_field, member function

class uvm_packer, 43

unpack_field_int, member function

class uvm_packer, 43

unpack_ints, member function

class uvm_object, 31

unpack_object, member function

class uvm_packer, 44

unpack_real, member function

class uvm_packer, 43

unpack_string, member function

class uvm_packer, 43

unpack_time, member function

class uvm_packer, 43

unpacking

class uvm_object, 30

unsync, member function

class uvm_phase, 159

use_metadata, data member

class uvm_packer, 45

use_response_handler, member function

class uvm_sequence_base, 126

user_priority_arbitration, member function

class uvm_sequencer_base, 104

utility functions

class uvm_resource_base, 141

uvm_action, enum, 234

uvm_active_passive_enum, enum, 235

uvm_agent

class, 98

class definition, 98

constructor, 98

uvm_analysis_export

class, 220

class definition, 220

uvm_analysis_imp

class, 222

class definition, 222

uvm_analysis_port

class, 219

class definition, 219

uvm_bitstream_t, typedef, 233

uvm_blocking_get_peek_port

UVM-SystemC Language Reference Manual – DRAFT Page 250

class, 211

uvm_blocking_get_port

class, 209

class definition, 209

uvm_blocking_peek_port

class, 210

class definition, 210, 211

uvm_blocking_put_port

class, 208

class definition, 208

uvm_bottomup_phase

class, 161

class definition, 161

constructor, 162

overview, 19

uvm_callback

class, 170

class definition, 170

constructor, 170

overview, 19

uvm_callback_iter

class, 171

class definition, 171

constructor, 172

overview, 19

uvm_callbacks

class, 173

class definition, 173

constructor, 174

overview, 19

uvm_comparer

class, 53

class definition, 53

overview, 17

uvm_component

class, 75

class definition, 75

constructor, 79

uvm_component_name

class, 36

class definition, 37

constructor, 37

overview, 16

UVM_COMPONENT_PARAM_UTILS, macro, 202

uvm_component_registry

class, 64

class definition, 65

overview, 17

UVM_COMPONENT_UTILS, macro, 202

uvm_config_db

class, 130

class definition, 130

constraints on usage, 131

overview, 18

uvm_config_int, typedef, 233

uvm_config_object, typedef, 234

uvm_config_string, typedef, 233

uvm_config_wrapper, typedef, 234

UVM_CREATE, macro, 205

UVM_CREATE_ON, macro, 205

UVM_DECLARE_P_SEQUENCER

macro, 112

UVM_DECLARE_P_SEQUENCER, macro, 205

uvm_default_comparer, default policy object, 60

uvm_default_line_printer, default policy object, 59

uvm_default_packer, default policy object, 60

uvm_default_printer, default policy object, 60

uvm_default_recorder, default policy object, 60

uvm_default_table_printer, default policy object, 59

UVM_DEFAULT_TIMEOUT, global define, 233

uvm_default_tree_printer, default policy object, 59

UVM_DO, macro, 204

UVM_DO_CALLBACKS, macro, 205

UVM_DO_ON, macro, 204

UVM_DO_ON_PRI, macro, 204

UVM_DO_PRI, macro, 204

uvm_domain

class, 159

class definition, 160

constructor, 160

overview, 19

uvm_driver

class, 96

class definition, 96

constructor, 97

uvm_env

class, 99

class definition, 99

constructor, 99

UVM_ERROR, macro, 203

uvm_factory

class, 67

class definition, 67

overview, 17

Page 251 UVM-SystemC Language Reference Manual – DRAFT

UVM_FATAL, macro, 203

UVM_INFO, macro, 202

uvm_integral_t, typedef, 233

uvm_line_printer

constructor, 53

uvm_line_printer

class, 53

class definition, 53

UVM_MAX_STREAMBITS, global define, 233

uvm_monitor

class, 97

class definition, 97

constructor, 97

uvm_nonblocking_get_peek_port

class, 217

class definition, 217

uvm_nonblocking_get_port

class, 214

class definition, 214

uvm_nonblocking_peek_port

class, 216

class definition, 216

uvm_nonblocking_put_port

class, 213

class definition, 213

uvm_object

class, 23

class definition, 23

constructor, 25

overview, 16

UVM_OBJECT_PARAM_UTILS, macro, 201

uvm_object_registry

class, 62

class definition, 62

overview, 17

UVM_OBJECT_UTILS, macro, 201

uvm_object_wrapper

class, 61

class definition, 61

overview, 17

uvm_objection

class, 164

class definition, 165

constructor, 166

overview, 19

uvm_packer

class, 39

class definition, 39

overview, 17

uvm_phase

class, 153

class definition, 153

constructor, 155

overview, 18

uvm_phase_type, enum, 235

uvm_port_base

class, 35

class definition, 35

constructor, 35, 36

overview, 16

uvm_printer

class, 45

class definition, 45

overview, 16

uvm_process_phase

class, 163

class definition, 163

overview, 19

UVM_REGISTER_CB, macro, 205

uvm_report_catcher

class, 194

class definition, 194

overview, 19

uvm_report_cb, typedef, 233

uvm_report_enabled, member function

class uvm_report_object, 181

uvm_report_error, member function

class uvm_report_catcher, 199

class uvm_report_object, 182

uvm_report_fatal, member function

class uvm_report_catcher, 199

class uvm_report_object, 182

uvm_report_handler

class, 186

class definition, 187

overview, 19

uvm_report_info, member function

class uvm_report_catcher, 200

class uvm_report_object, 181

uvm_report_object

class, 177

class definition, 178

overview, 19

uvm_report_server

UVM-SystemC Language Reference Manual – DRAFT Page 252

class, 189

class definition, 189

overview, 19

uvm_report_warning, member function

class uvm_report_catcher, 199

class uvm_report_object, 181

uvm_resource

class, 148

class definition, 148

overview, 18

uvm_resource_base

class, 138

class definition, 138

constructor, 139

overview, 18

uvm_resource_db

class, 132

class definition, 132

overview, 18

uvm_resource_db_options

class, 136

class definition, 136

uvm_resource_options

class, 137

class definition, 137

overview, 18

uvm_resource_pool

class, 142

class definition, 142

overview, 18

uvm_resource_types

class, 151

class definition, 151

uvm_root

class, 32

class definition, 32

overview, 16

uvm_scoreboard

class, 100

class definition, 100

constructor, 101

uvm_seq_item_pull_export

class, 230

class definition, 231

uvm_seq_item_pull_imp

class, 231

class definition, 231

uvm_seq_item_pull_port

class, 230

class definition, 230

uvm_sequence

class, 128

class definition, 128

constructor, 128

overview, 18

uvm_sequence_base

class, 117

class definition, 118

constructor, 120

overview, 18

uvm_sequence_item

class, 114

class definition, 114

constructor, 115

overview, 18

uvm_sequence_state_enum, enum, 235

uvm_sequencer

class, 110

class definition, 110

constructor, 111

macros, 112

overview, 18

uvm_sequencer_base

class, 103

class definition, 103

constructor, 104

overview, 18

uvm_sequencer_param_base

class, 108

class definition, 108

constructor, 109

overview, 18

uvm_set_config_int, global function, 22

uvm_set_config_string, global function, 22

uvm_severity, enum, 234

uvm_sqr_if_base

class, 226

class definition, 227

overview, 18

uvm_subscriber

class, 101

class definition, 101

constructor, 102

uvm_table_printer

Page 253 UVM-SystemC Language Reference Manual – DRAFT

constructor, 52

uvm_table_printer

class, 51

class definition, 52

uvm_task_phase. See uvm_process_phase

uvm_test

class, 99

class definition, 100

constructor, 100

uvm_tlm_req_rsp_channel

class, 223

class definition, 223

uvm_top, data member

class uvm_root, 34

uvm_topdown_phase

class, 162

class definition, 162

constructor, 163

overview, 19

uvm_transaction

class, 113

class definition, 113

constructor, 114

overview, 18

uvm_tree_printer

constructor, 52

uvm_tree_printer

class, 52

class definition, 52

uvm_verbosity, enum, 234

uvm_void

class, 23

class definition, 23

overview, 16

UVM_WARNING, macro, 203

V

verbosity configuration

class uvm_report_object, 182

verification environment. See environment

virtual sequence, definition, 241

W

wait_for, member function

class uvm_objection, 169

wait_for_grant, member function

class uvm_sequence_base, 125

class uvm_sequencer_base, 105

wait_for_item_done, member function

class uvm_sequence_base, 126

class uvm_sequencer_base, 105

wait_for_relevant, member function

class uvm_sequence_base, 123

wait_for_sequence_state, member function

class uvm_sequence_base, 120

wait_for_sequences, member function

class uvm_sequencer_base, 108

wait_for_state, member function

class uvm_phase, 159

wait_modified, member function

uvm_config_db, 132

wait_modified, member function

class uvm_resource_base, 140

write, member function

class uvm_resource, 150

write_by_name, member function

class uvm_resource_db, 135

write_by_type, member function

class uvm_resource_db, 136

