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 Introduction 

 
This standard describes a standard syntax and semantics for SystemC synthesis. It defines the 
subset of SystemC that is suitable for RTL/behavioral synthesis and defines the semantics of 
that subset for the synthesis domain. This standard is based on the C++ standard and the IEEE 
1666 SystemC standard. 
 
The purpose of this standard is to define a syntax and semantics that can be recognized in 
common by all compliant RTL/behavioral synthesis tools to achieve behavioral uniformity of 
results in a similar manner to which simulation tools use the SystemC standard. This will 
allow users of synthesis tools to produce well defined designs whose functional characteristics 
are independent of a particular synthesis implementation by making their designs compliant 
with this standard. 
 
The standard is intended for use by logic designers, electronic engineers and design 
automation tool developers. 
 
The following team members drove the Draft 2.0 effort: 
Mike Meredith 
Benjamin Carrion Schafer 
Alan P. Su 
Andres Takach, Chair 
Jos Verhaegh 
 
 
The following team members drove the Draft 1.0 effort: 
Eike Grimpe 
Rocco Jonack 
Masamichi Kawarabayashi, past Chair 
Mike Meredith 
Fumiaki Nagao 
Andres Takach 
Yutaka Tamiya 
Minoru Tomobe 
 
A majority of the work conducted by the working group was done via teleconferencing which 
was held regularly. Also, the working group used an email reflector and its web page 
effectively to distribute and share information. 
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1 Overview 

1.1  Scope 
Synthesis Working Group (SWG) of Open SystemC Initiative(OSCI) developed a definition 
of Synthesizable-SystemC (SSC). This will be useful not only for hardware designers to 
accelerate the modeling and design process with SystemC, but also for EDA tool developers 
to develop SystemC compliant synthesis tools. SSC will be defined within C++ and IEEE 
1666 SystemC specifications, but SWG may propose extensions of SystemC and additional 
libraries for efficient synthesis for future possibilities. 

1.2  Purpose 
Users will be able to develop any system with SystemC at any abstraction level, and verify it 
with reference implementation available on the OSCI web-site under the valid license 
agreement. Currently available resources providing a description of the language include a 
User Guide, Functional Specifications, and the Language Reference Manual. Some books for 
SystemC modeling have also been published. However, currently there are no defined 
standards for synthesizable description in SystemC. We will call this "Synthesizable-SystemC 
(SSC)" here. 
 
It is widely known that synthesis technology reduces the time required for hardware design 
dramatically, and is one of the most important phases in the design flow. In order to utilize the 
powerful SystemC based design environment, SSC is essential for top-down design with 
SystemC. 
 
SSC consists of a definition of a synthesizable subset of the SystemC language along with 
coding guidelines. The synthesizable subset defines which syntactic elements in SystemC 
should be synthesized with synthesis tools. It covers at least the register transfer level and the 
behavioral level. More abstraction levels are also discussed in this working group as the next 
step. The synthesis tools that support this subset completely can be identified as being 
Synthesizable-SystemC compliant. 
 
The coding guidelines assist hardware designers to describe synthesizable SystemC codes 
efficiently. Coding guidelines at the register transfer level, for Logic Synthesis and at the 
behavioral level, for High Level Synthesis, may be individually described to facilitate each 
design phase. 
Figure 1.1, on the next page, shows an abstract view of a design flow involving both Logic 
and High Level synthesis 
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 Figure 1.1 Abstract view of design flow involving High Level and Logic synthesis 
 
This document is the definition of  a synthesizable  subset of SystemC, as discussed and 
agreed upon  by the Synthesis Working Group. The intent of this document is to describe a 
minimum initial subset which can be supported by tools. It is not meant to restrict synthesis 
support for syntax beyond this subset. 
 

1.3  Terminology 
The word shall indicates mandatory requirements strictly to be followed in order to conform 
to the standard and from which no deviation is permitted (shall equals is required to).  
 
The word should is used to indicate that a certain course of action is preferred but not 
necessarily required; or that (in the negative form) a certain course of action is deprecated but 
not prohibited (should equals is recommended that). 
 
The word may indicates a course of action permissible within the limits of the standard (may 
equals is permitted). 
 
A synthesis tool is said to accept a SystemC construct if it allows that construct to be a legal 
input; it is said to interpret the construct (or to provide an interpretation of the construct) by 
producing something that represents the construct. A synthesis tool is not required to provide 
an interpretation for every construct that it accepts, but only for those for which an 
interpretation is specified by this standard.  
 
The constructs in the standard shall be categorized as: 
 
Supported: Synthesis shall interpret a construct, that is, map the construct to an equivalent 
hardware representation. 
 
Extended: Synthesis shall interpret the extended construct from the original C++ syntax. 
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Ignored: Synthesis shall ignore the construct. Encountering the construct shall not cause 
synthesis to fail, but synthesis results may not match simulation results. The mechanism, if 
any, by which synthesis notifies (warns) the user of such constructs is not defined by this 
standard. Ignored constructs may include unsupported constructs. 
 
Not Supported: Synthesis does not support the construct. Synthesis does not expect to 
encounter the construct and the failure mode shall be undefined. Synthesis may fail upon 
encountering such a construct. Failure is not mandatory; more specifically, synthesis is 
allowed to treat such a construct as ignored. 

1.4  Conventions 
This document uses the following conventions: 
 

a) The body of the text of this standard uses boldface to denote SystemC or C++ 
reserved words (e.g. sensitive). 

 
b) The text of the SystemC examples and code fragments is represented in a fixed-

width font. 
 
c) Syntax text that is struck-through (e.g. text) refers to syntax that shall not be 

supported. 
 
d) Syntax text that is underscored (e.g. text) refers to syntax that shall be ignored. 
 
e) Syntax test that is shadowed (e.g. text) refers to syntax that shall be extended. 
 
f) Lowercase words in roman font, some containing embedded hyphens, are used to 

denote syntactic categories, for example: 
  nested-namespace-specifier 
 
g) )A production consists of a left-hand side, the symbol “::=” (which is read as “can be 

replaced by”), and a right-hand side. The left-hand side of a production is always a 
syntactic category; the righthand side is a replacement rule. The meaning of a 
production is a textual-replacement rule: any occurrence of the left-hand side may be 
replaced by an instance of the right-hand side. 

 
h) A vertical bar (|) separates alternative items on the right-hand side of a production 

unless it occurs immediately after an opening brace, in which case it stands for itself, 
as follows: 

 class-or-namespace-name ::= class-name |  name-space-name 
 expression-list ::= assignment-expression | expression-list , assignment-expression 
 In the instance, an occurrence of “class-or-namespace-name” can be replaced by either 
“class-name” or “name-space-name”. In the second case, “expression-list” can be replaced 
by a list of “assignment-expression”, separated by comma (,). 
 
i) Square braces [ ] enclose an option item. The items may appear zero or one time. 

Thus, the following two productions are equivalent: 
  init-declarator ::= declarator [ initializer ] 
  init-declarator ::= declarator | declarator initializer 
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j) Any paragraph starting with "NOTE--" is informative and not part of the standard. 
 
k) The examples that appear in this document under "Example:", are for the sole purpose 

of demonstrating the syntax and semantics of SystemC for synthesis. It is not the 
intent of this standard to demonstrate, recommend, or emphasize coding styles that are 
more (or less) efficient in generating an equivalent hardware representation. In 
addition, it is not the intent of this standard to present examples that represent a 
compliance test suite, or a performance benchmark, even though these examples are 
compliant to this standard (except as noted otherwise). 

1.5 Abstraction Levels 
How abstraction levels support design activities 
The goal of a system-level design methodology is to decrease design cost and design time 
Firstly, the complexity of modern systems does not allow us to describe implementations 
directly. Furthermore, it is difficult to create derivative implementations with different 
functions or different architectures, because functions and architectures cannot be extracted 
easily from implementations for re-use. Therefore a separation of function, architecture and 
implementation are necessary when designing a system. Design activities are needed to 
combine functions and architectures to implementations to decrease design time and design 
cost.  
To be able to separate function, architecture and implementation in  a System Design flow 
abstraction levels need to be defined. The idea is to gradually confront designers with 
implementation details such as timing and data representations. We distinguish three main 
levels of abstraction: function level, architecture level and implementation level. Each level 
has modeling views to be discussed in detail in respective sections. Figure 1.2 shows the 
abstraction levels in a System Design Flow. 

 
  Figure 1.2 Abstraction levels in a System Design Flow 

1.5.1 Function Level 
The motivation for introducing this level of abstraction is to quickly obtain a function to 
determine what the system is supposed to do, without making architecture assumptions. 
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Hence there is the potential to re-use functions either to create derivative functions, or to 
synthesize different implementations with different architectures. 
An example of a view at this level is a function modelled as a process network in YAPI which 
can be analyzed through simulation. 
At the Function Level of abstraction two design steps can be identified: 

• Algorithm Specification 
• Partitioning into communicating tasks 

1.5.1.1 Function Level: Algorithm Specification 
 
 

 

In this design step an executable functional specification of the algorithm is created. (e.g. in 
C/C++/Matlab code). This executable specification is used to check the validity of the 
algorithm. The simulation in this design step is sequential, it has no timing information and it 
has a single thread of control. The simulation speed is high due to lack of timing and 
architecture details 
Profiling techniques are used to obtain an initial estimate of the computational load of the 
different functions and the amount of data transfer between them. 
Code inspection is used to estimate the amount of flexibility required for each of the 
functions. The results of both, code inspection and profiling, are used as input for task 
partitioning and, in a later stage as input for Hardware/Software partitioning. 
Next to algorithm verification the executable functional specification generated in this step is 
also used as a golden reference model throughout the whole flow. 
 

1.5.1.2 Function Level: Partitioning into communicating tasks 
 

 

 

 

 

With the design constraints and requirements and a suitable architecture template in mind and 
the results from the previous algorithm design step the system is partitioned into tasks that 
perform processing functions and channels through which data are communicated between 
these tasks.  
The processes in such a network are concurrent and are connected by communication 
channels. Processes produce data elements and send them along a unidirectional 
communication channel where they are stored in a first-in-first-out order until the destination 
process consumes them. A network, as described above, is also referred to as a Kahn Process 
Network (KPN) [3]. 
In KPN, parallelism and communication are explicitly modeled, which is essential for the 
mapping onto multi-processor systems. Another property of KPN is that an application 
designer can combine processes into networks without specifying their order of execution. 
This property stimulates the modular construction and reuse of applications (functional IP), 
since it is easier to compose new applications using existing ones. 
Using a multi-threaded simulation the communication load on the channels and the 
computation load on the tasks are analyzed. If necessary the system can be repartitioned to 

T0 

T1 T2 T3 T4 



 

- 6 - 

meet the constraints and requirements. Also the functional correctness of the partitioning is 
checked during the multi-threaded simulation. 
To model signal processing applications as Kahn Processing Networks YAPI [4,5] can be 
used. The purpose of YAPI is to enable the reuse of signal processing applications and the 
mapping of signal processing applications onto heterogeneous systems that contain hardware 
and software components.  
YAPI has also been embedded in SystemC. YAPI embedded in SystemC is developed as a 
SystemC class library with a set of rules that can be used to model stream processing 
applications as a process network. As mentioned above the model of computation in YAPI is 
based on KPN.  
 
 

1.5.2 Architecture Level 
The motivation for introducing this level of abstraction is to quickly find an efficient 
implementation. Efficiency can be defined in terms of power, timing, area, etc. To be able to 
quickly evaluate the efficiency of alternative implementations, we want to avoid the effort of 
making them in detail. For example the decision to base an implementation on a message 
passing or a shared memory architecture leads to two alternative implementations. 

Transaction Level Modeling (TLM) is developed for abstract modeling of (SoC) systems at 
architecture level allowing efficient system exploration. Literally a transaction is the exchange 
of goods, services or funds; or a communicative action or activity involving two parties or 
things that reciprocally affect or influence each other (Merriam-Webster Online Dictionary). 
Both meanings have two ingredients, exchange/communication and goods/influence. In an 
electronic system the goods or influence can be considered as the computation (goods) or the 
effect of the computation (influence). There are many discussions regarding TLM over the 
years, here we use only definitions, terminologies and libraries developed by the OSCI TLM 
Working Group (TLM WG). 

1.5.2.1 Transaction Level Modeling 
Although TLM includes computation and communication, OSCI TLM 1.0 and 2.0 discuss 
only the communication part. In the physical form, a transaction is a payload, the data 
structure that passed between modules. By definitions from TLM WG, we have following 
modeling views (or called modelling styles): 

1. Un-Timed (UT): A modeling style in which there is no explicit mention of time or cycles, 
but which includes concurrency and sequencing of operations. In the absence of any 
explicit notion of time as such, the sequencing of operations across multiple concurrent 
threads must be accomplished using synchronization primitives such as events, mutexes 
and blocking FIFOs. Some users adopt the practice of inserting random delays into 
untimed descriptions in order to test the robustness of their protocols, but this practice 
does not change the basic characteristics of the modeling style. 

2. Loosely Timed (LT): A modeling style that represents minimal timing information 
sufficient only to support features necessary to boot an operating system and to manage 
multiple threads in the absence of explicit synchronization between those threads. A 
loosely timed model may include timer models and a notional arbitration interval or 
execution slot length. Some users adopt the practice of inserting random delays into 
loosely timed descriptions in order to test the robustness of their protocols, but this 
practice does not change the basic characteristics of the modeling style. 
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3. Approximately Timed (AT): A modeling style for which there exists a one-to-one 
mapping between the externally observable states of the model and the states of some 
corresponding detailed reference model such that the mapping preserves the sequence of 
state transitions but not their precise timing. The degree of timing accuracy is undefined. 

4. Cycle Accurate (CA): A modeling style in which it is possible to predict the state of the 
model in any given cycle at the external boundary of the model and thus to establish a 
one-to-one correspondence between the states of the model and the externally observable 
states of a corresponding RTL model in each cycle, but which is not required to explicitly 
re-evaluate the state of the entire model in every cycle or to explicitly represent the state 
of every boundary pin or internal register. This term is only applicable to models that have 
a notion of cycles. 

UT modules are synthesizable. LT modules use absolute time for timing information and thus 
not synthesizable. For example we cannot synthesize sc_time(10, SC_NS) which is used to 
represent the latency to execute a certain function. AT modules are not synthesizable as well 
because states and state transitions modelled using AT are not precise in timing. It is still 
uncertain if cycle accurate modules are synthesizable because TLM WG has not developed 
how to model cycle accurate in TLM 2.0. For further details please refer to TLM 2.0. 

1.5.3 Implementation Level 
This abstraction level captures the details of the interfaces and the IO functionality including a 
full or partial specification/modelling of their timing. The communication among of blocks is 
carried out at the signal-level. The specification of the interface is pin-accurate and should be 
preserved by synthesis for the top-level module. Implementation levels include Register-
Transfer Level (RTL), Gate Level and Behavioral Level. RTL and Gatel Level are widely 
used and have traditionally written in HDL languages such as verilog/VHDL and 
SystemVerilog. The abstraction level below gate level is expressed in the GDSII format. 
SystemC is not suitable for this abstraction level. 
The Gate Level consists of interconnection of instantiations of technology leaf cells. The 
specification is structural. The behaviour of each cell is written for simulation and in general 
is quite simple. For example, combinational gates are typically written in the form of 
concurrent statements. Sequential gates include registers and memories are usually written in 
the same form as it is done at the RTL level. 

The RTL level allows the specification of both structure and more behavioral constructs: 

• In addition to bit-wise logic, word-level arithmetic, such as a * b can be specified and 
synthesized.  

• Loops with constant number of iterations can be specified. Such loops are fully 
unrolled.  

• A finite-state machine (FSM) can be specified in a way where synthesis can recognize 
it as an FSM and perform optimizations such as state encoding etc. The computation 
of the next-state and the output is done with behavioral constructs such as if-then-else 
and case statements. 

• A finite-state machine, where states and transitions may contain complex logic and 
arithmetic behaviour (not just simple constant assignments to outputs). This is called 
an explicit-state machine.  Registers may be specified either inside or outside the 
explicit-state machine.  
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The interface of RTL sub-blocks may be changed by synthesis (boundary optimization), but 
the top-level interface is preserved. Clock, reset and enable behavior is explicitly specified. 
Internal cycle timing of operations maybe changed in limited ways (retiming) under user 
control.  

The verification methodology of the output from RTL synthesis against the reference RTL 
specification is well defined for both combinational and sequential hardware. For instance 
IEEE Standard 1076-2004 defines this for VHDL and the same methodology is applicable for 
SystemC RTL specifications. 

The behavioral-level introduces some freedom in how operations and IO are scheduled by 
only partially constraining the cycle-by-cycle behaviour of the IO. Registers are not explicitly 
defined, but instead are determined by synthesis. Storage requirements are dependent on how 
operations are scheduled: registers are used to store values that are used one or more cycles 
after the cycle in which they are generated. Storage of arrays may be mapped to memories or 
to registers. The specification of behaviour is in the form of an implicit-state machine rather 
than the explicit-state machine generally used for RTL. In an implicit-state machine, there is 
no explicit state variable that is used to select what behaviour is executed next. Instead, the 
behaviour consists of a process that is sensitive to the clock and possibly a reset signal (for 
asynchronous resets). The process uses language constructs such as loops, constructs to 
continue and exit loops and constructs to specify conditional behaviour (if-then-else and case 
constructs) and wait statements that specify cycle timing among sets of output assignments.  

The output from behavioral synthesis is a synthesizable RTL description and/or a Gate-Level 
description. The verification methodology of the generated specifications against the 
behavioral (source) specification is more complex (than the RTL level vs. Gate-Level 
specification) since the cycle-by-cycle behaviour may be changed by synthesis.  

To devise the discussion in implementation level, let equation Y = P(X) denotes the target 
process where P is the function of the target process. X = {x1, x2, … , xn, v1, v2, … , vm} be the 
set of input signals where xi, 1 ≦ i ≦ n, are signals in the sensitivity list and vj, 1 ≦ j ≦ m, are 
signals not in the sensitivity list. And Y = {y1, y2, … , yl} be the set of output signals. 

. Example: 

SC_MODULE( AddMul_1 ) { 
 sc_in< sc_clock > clk; 

sc_in< sc_uint<16> > a, b, c; 
 sc_out< sc_uint<32> > result; 
 
 void addmul_1() { 
  result = a + (b * c); 
 } 
 
 SC_CTOR( AddMul_1 ) { 
  SC_METHOD( addmul_1 ); 
  sensitive << clk.pos(); 
 
 } 
}; 

In the above example P is the function void addmul_1(); X = {x1, v1, v2, v3} where x1 = 
clk, v1 = a, v2 = b and v3 = c; Y = {y1} where y1 = result. 

1.5.3.1 Behavioral Level 
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Behavioral level is also known as functional level or behavioral architectural-level as called in 
[De Micheli 94, Knapp 96]. At behavioral level, the equation Y = P(X) both X and Y contain 
no time. As soon as any xi of X changes value then P computes Y at exactly the same instance. 
Different from UT, only a non-empty subset of X is in the sensitivity list. A virtual clock can 
be the only one or one of the xi of X. When the virtual clock triggers the process, P computes 
Y based on X at exactly the same instance. 

. Example: 

SC_MODULE( AddMul_2 ) { 
sc_in< sc_uint<16> > a, b, c; 

 sc_out< sc_uint<32> > result; 
 
 void addmul_2() { 
  result = a + (b * c); 
 } 
 
 SC_CTOR( AddMul_2 ) { 
  SC_METHOD( addmul_2 ); 
  sensitive << a << b << c; 
 } 
}; 

In the above example the process function P is addmul_2(); the input set is X = {x1, x2, x3 } 
where x1 = a, x2 = b and x3 = c; the output set is Y = {y1} where y1 = result. 
 
. Example: 

SC_MODULE( AddMul_3 ) { 
 sc_in< sc_clock > clk; 
 sc_in< bool > rst; 

sc_in< sc_uint<16> > a, b, c; 
 sc_out< sc_uint<32> > result; 
 
 void addmul_3() { 
  result = 0; 
  wait(); 
  while (1) { 
   result = a + (b * c); 
   wait(); 
  } 
 } 
 
 SC_CTOR( AddMul_3 ) { 
  SC_CTHREAD( addmul_3, clk.pos() ); 
  reset_signal_is(rst, false); 
 
 } 
}; 

In the above example the process function P is the combination of void addmul_3() and 
semantics of SC_CTHREAD and reset_signal_is(). Furthermore clk and rst ports 
are identified as sensitive events and clk is the clock port and rst the reset port. The input 
set is X = {x1, x2, v1, v2, v3} where x1 = clk, x2 =  rst, v1 = a, v2 = b and v3 = c. The output set 
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is Y = {y1} where y1 = result. The semantics of SC_CTHREAD and reset_signal_is() will 
be described later in Section 9.4. 

1.5.3.2 Register Transfer Level 
Register Transfer Level (RTL), as the name suggested, describes functions and signals from 
registers to registers. The basic elements of this level are combinational and sequential 
functional/logic units, registers and signals. Notice that a physical circuit contains no registers 
cannot be modelled at RTL. It can only be modelled at gate level and below. 
At RTL: 

1. Time does not necessarily in the unit of cycles. In some cases it is in a time unit like 
picosecond or nanosecond. 

2. Time is an implicit factor of Y = P(X). Time is not considered as input nor output signals. 
Instead time is embedded in P to compute Y. P implicitly describes how much time each 
atomic operation, i.e. addition, multiplication, subtraction, and, or, etc., will take to 
evaluation how much time in total to compute Y. 

3. The physical clock port must be in the sensitivity list. 

An RTL module has a Finite State Machine (FSM) which describes cycle-by-cycle behaviour 
of the target module. The functional behaviour of each state can be described inside the FSM. 
We call this kind of FSM the FSM with Datapath (FSMD). Or the functional behaviour is 
described using a separate datapath which is then controlled by the FSM. 
. Example: 

SC_MODULE( AddMul_4 ) { 
 sc_in< sc_clock > clk; 
 sc_in< bool > rst; 

sc_in< sc_uint<16> > a, b, c; 
 sc_out< sc_uint<32> > result; 
 
 void addmul_4() { 
  sc_signal<sc_uint<32> > tmp1; 
 
  tmp1 = 0; 
  result = 0; 
  wait(); 
  while (1) { 
   tmp1 = b * c; 
   wait(); 
   result = a + tmp1; 
   wait(); 
  } 
 } 
 
 SC_CTOR( AddMul_4 ) { 
  SC_CTHREAD( addmul_4, clk.pos() ); 
  reset_signal_is(rst, false); 
 
 } 
}; 

In the above example the process function P = void addmul_4() is a cycle-by-cycle 
FSMD with reset state, i.e. the if(rst == false){} block, and a 2-state, register-to-
register computation unit, i.e. the while(1){} block, and registers are inherited state 
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registers and tmp1. The cycle time is implicitly described in the combined semantics of 
SC_CTHREAD, reset_signal_is() and wait() statements. The clock port, clk, is 
specified as a sensitive input using SC_CTHREAD(). 

1.5.3.3 Gate Level 
At this level the basic elements are logic gates, i.e. AND, OR, NOT, XOR, etc., and signals that 
connect gates. To model at this level we must first have a logic gate library so one can 
instantiate gates needed then declare proper signals to glue logic gates together. 
. Example: 

SC_MODULE( AND2 ) { 
 sc_in< sc_uint<1> > a, b; 
 sc_out< sc_uint<1> > c; 
 
 void and2() { 
  c = a & b; 
 } 
 
 SC_CTOR( AND2 ) { 
  SC_METHOD( and2 ); 
  sensitive << a << b; 
 } 
}; 
 
SC_MODULE( OR2 ) { 
 sc_in< sc_uint<1> > a, b; 
 sc_out< sc_uint<1> > c; 
 
 void or2() { 
  c = a | b; 
 } 
 
 SC_CTOR( OR2 ) { 
  SC_METHOD( or2 ); 
  Sensitive << a << b; 
 } 
}; 
 
SC_MODULE( ANDOR ) { 

sc_in< sc_uint<1> > a, b, c; 
 sc_out< sc_uint<1> > d; 
 
 void andor() { 

 AND2 *andgate; 
  R2 *orgate; 

 sc_signal<sc_uint<1> > wire1, wire2, wire3, wire4; 
 
  andgate = new AND2(“andgate”); 
  orgate = new OR2(“orgate”); 
  a(wire1); 
  b(wire2); 
  andgate->a(wire1); 
  andgate->b(wire2); 
  andgate->c(wire3); 
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  orgate->a(wire3); 
  orgate->b(wire4); 
  d(wire4); 
  while (1) { 

wait(); // forever loop 
  } 
 } 
 
 SC_CTOR( ANDOR ) { 
  SC_THREAD( andor ); 
  sensitive << a << b << c; 
 
 } 
}; 

In above example we first build AND2 and OR2 gates to be used as library components in the 
ANDOR module. It is interesting to note that the modeling style of ANDOR is different from 
that of AND2 and OR2. In ANDOR gates and wires are instantiated then connected. There is no 
any computational or controlling description in void addor(). However in AND2 and 
OR2 the modeling style fits the description of the behavioral level. For such primitive 
components one do can argue that their behavioral descriptions are actually at gate level. 

1.6 ESL Synthesis 
 

1.6.1 Introduction 
 
The conventions described in this chapter are focused on synthesis solutions that generate 
non-programmable RTL cores.  
High Level Synthesis, also known as Behavioral Synthesis, the second level of the ESL 
Synthesis, allows design at higher levels of abstraction by automating the translation and 
optimization of a behavioral description, or high-level model, into an RTL implementation. It 
transforms un-timed or partially timed functional models into fully timed RTL 
implementations.  
Because a micro-architecture is generated automatically, designers can focus on designing 
and verifying the module functionality. Design teams create and verify their designs in less 
time because it eliminates the need to fully schedule and allocate design resources, as done 
with existing RTL methods. This behavioral design flow increases design productivity, 
reduces errors, and speeds up verification. Figure 1.3 shows an abstract view of a design flow 
involving both Logic and High Level synthesis 
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 Figure 1.3 Abstract view of design flow involving High Level and Logic synthesis 
 
A typical high level synthesis process incorporates a number of complex stages. This process 
starts with a high-level language description of a module's behavior, including I/O actions and 
computational functionality. Several algorithmic optimizations are performed to reduce the 
complexity of a result and then the description is analyzed to determine the essential 
operations and the dataflow dependencies between them.  
The other inputs to the high level synthesis process typically include a target technology 
library, characterized at a target frequency for the selected fabrication process, and a set of 
directives that will influence the resulting architecture. The directives include, for example, 
timing constraints used by the algorithms of the tool, as they create a cycle-by-cycle schedule 
of the required operations. The characterized library is used when allocation and binding 
occurs, in order to assign these operations to specific functional units such as adders, 
multipliers, comparators, etc.  
Finally, a state machine is generated that will control the resulting datapath implementation of 
the desired functionality. The datapath and state machine outputs are in RTL code, optimized 
for use with conventional logic synthesis or physical synthesis tools. 
 

1.6.2 Vision 
 
Easier management of system complexity, accelerated design verification and implementation, 
increased opportunity for design reuse, and wider selection of implementation options, these 
are just a few reasons why project teams are moving to ESL design. However, by moving to 
the higher levels of abstraction a design gap between ESL and RTL has come into existence.  
For each algorithm modelled at abstract level, there are numerous ways it can be realized in 
hardware. However, with tight schedules and increasing complexity, there simply is not 
enough time to create more than one RTL implementation by hand after an algorithm and 
architecture choice is made. This way alternative hardware implementation options that could 
significantly impact performance, area, or power are seldom created or evaluated.  

With the availability of a general-purpose language based on C++, like SystemC, and the 
maturity of high level synthesis and verification tools, high-level models can be leveraged to 
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help evaluate trade-offs in architectures and algorithms in a way not previously available. 
Summarizing, high level synthesis enables the transition to high-level design by closing the 
gap between ESL and RTL flows. 

 
Figure 1.4 The vision from architecture (TLM) to implementation (RTL) 

 
Figure 1.4 shows the vision to synthesize from architecture to RTL. Components in the 
architecture are described in synthesizable SystemC and interfaced and connected using the 
TLM library. As mentioned earlier HLS is the second layer of ESL Synthesis, the first layer is 
architecture synthesis. Architecture synthesis reads in architectures described using TLM 
library and decide memory infrastructure, cache structure, DMA structure, bus layers, I/O 
devices, CPU selections, etc. Architecture synthesis and HLS together comprise the ESL 
Synthesis. While synthesizing TLM semantic is the first step toward architecture synthesis, it 
is a future task of Synthesis WG to define the synthesizable subset of the TLM library. 
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Figure 1.5  Abstract view of possible implementation flow from ESL down to GDSII  

 
Figure 1.5  shows a possible implementation flow from ESL down to GDSII incorporating 
ESL Synthesis. Based on the diagram a wish list of requirements for ESL Synthesis solutions, 
based on C/C++/SystemC can be defined: 
 

 automate the RTL implementation from behavioral C/C++/SystemC (TLM) models 
 support a fast design time (implementation & Verification) 

– At least a 2x improvement compared to hand coded design 
 support optimization for Performance, Area and Power 

– On par or better area figures for a required performance compared to hand 
coded 

– Automatic timing closure based on back-annotated static timing analysis 
– Automatic power optimization based on dynamic power simulation 

 support generation of behavioral SystemC TLM models with timing annotation 
(LT/AT) and SystemC CA models 

 automate reuse of high level test environment for verification of RTL implementation, 
netlist and generated SystemC TLM views 

– Support of assertions 
– Support for functional equivalence checking 

 support synthesis from and generation of TLM 2.0 SystemC compliant models 
 Full integration of high level synthesis methodology in System Level Design 

Environment 
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2 Translation units and their analysis 
A translation unit consists of a set of declarations. A translation unit contains less than one 
sc_main function and must not contain any main or sc_main function.   

 
A synthesis tool may ignore whole of the sc_main function, or may recognize the sc_main 
function in order to obtain actual parameters of template modules and/or modules whose 
constructor takes parameters. 
 
Example: 
 
 int sc_main(int argc, char* argv[]) 
 { 
   ... 
   // Instance of a template module.  
   AndGate<4> and_inst("and");  // The template parameter is 4.  
  
   // Instance of a module with a parameter.  
   Increment inc_inst("inc", 5);  // The parameter of constructor is 5.  
   ... 
 } 
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3 Modules 
A SystemC module represents an individual identifiable hardware element. A module is 
defined by a module definition. 

3.1 Module definitions 
A module definition defines the port-level interface of a module, its internal storage elements 
and its behavior. The synthesizable subset supports modules declared as a class or as a struct. 
In addition, specialization of modules using templates is supported. 
 
There are three supported possibilities for module definition. 
 Use of the SC_MODULE macro 
 Direct derivation from sc_module 
 Derivation from a class or struct derived from sc_module 

 
Each class or structure which is derived from sc_module or which is declared using the 
SC_MODULE macro is called a module. 

The class key for a module declaration must either be class or struct. 

3.1.1 Module member specification 
 
The module member specification contains a set of member declarations and definitions. This 
set must include exactly one module constructor declaration or definition. 

3.1.2 Module declarative items 
Items which are declared in the module body are available for use by all functions defined 
within the scope of the module. 
 
Apart from the module constructor a module must not declare any special member function or 
overload any operator. 

No member of a module must be accessed from outside of the scope of that module on an 
instance of that module, i.e. by means of the member access operators ., *. or ->.  

Shared variables (not meaning signals and ports) are not supported for synthesis. If a module 
body contains a variable declaration, the variable must be accessed exclusively by one process 
of the same module. 

A module which does not include any constructor declaration using the SC_CTOR macro 
and which includes process declarations must contain exactly one has-process-declaration. A 
module which includes a module constructor using the SC_CTOR macro must not include 
any has-process-declaration.  

Example: 

SC_MODULE( mod ) { 
 void dummy() {} 

SC_HAS_PROCESS( mod );  // error: a module which contains the   
                        // SC_CTOR macro must not contain a  
                                                         // has-process-declaration 
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SC_CTOR( mod ) { 
 SC_METHOD( dummy );   
} 

}; 
 

3.1.2.1 Ports 
Ports represent the externally visible interface to a module and are used to transfer data into 
and out of the module. Ports can be declared using sc_in, sc_out and sc_inout constructs.   
 

3.1.2.2 Signals 
Signals can be used to keep values and interface between processes. 

3.1.2.3 Exports 
Exports represent the externally visible interface to a module and are used to transfer data into 
and out of the module. Exorts can be declared using sc_export construct. 

3.1.2.4 Module constructor 
 
Every module declaration must contain exactly one declaration or definition of a constructor 
method. Sub module instantiations, port mappings, and process statements are located in the 
module constructor. In contrast to normal C++ practice, initialization behavior must be placed 
in the reset clause of the process methods as opposed to residing in the constructor. 
Initialization of constant data members in the constructor is permitted. There are two ways to 
declare a module constructor, through the use of the SC_CTOR macro, or through the explicit 
derivation of a module class from sc_module. Both ways are supported for synthesis. 
 
Where the identifier must be the name of the enclosing module in which the constructor is 
defined. If a module constructor is only declared but not defined, a definition of the module 
constructor must follow elsewhere in the translation unit. 

If a module constructor is declared without using the SC_CTOR macro, it must declare at 
least one parameter of type sc_module_name and it must include at least one mem-initializer 
passing the name of that parameter to the parent class ‘sc_module’. 

Examples: 
 
 // A module declaration with port declaration only: 
 
  SC_MODULE( FullAdder ) { 
      sc_in< bool> X, Y, Cin; 
      sc_out< bool > Cout, Sum; 
      SC_CTOR( FullAdder ) {} 
  }; 
 

// A module template declaration (without any functionality): 
 

template< unsigned char N = 2 > 
SC_MODULE( AndGate ) { 
       sc_in< sc_uint< N > > Inputs; 
    sc_out< bool> Result; 
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    SC_CTOR( AndGate ) {} 
}; 
 

// A module declaration with constant declaration and initialization: 
 

SC_MODULE(Increment) { 
    sc_in<sc_int<16> > A; 
    sc_out<sc_int<16> > X; 
    const int m_delta; // initialized by the constructor 
    SC_HAS_PROCESS(Increment); 
 

Increment(sc_module_name& name_, int delta) 
     : sc_module(name_), m_delta(delta) 
    { 
      SC_METHOD(proc); 
      sensitive << A; 
    } 
 
    void proc() { 
      X = A.read() + m_delta; 
    } 
}; 

 

3.2 Deriving modules 
A module may be declared as a specialization of an existing module by derivation from the 
existing module. In this case the module must be declared explicitly using the class keyword 
(SC_MODULE may not be used) and its constructor must be declared explicitly (SC_CTOR 
may not be used). If the derived module has processes, it must include an 
SC_HAS_PROCESS() statement in its body. 
 
Module identifier must denote the name of the surrounding module. 
 
Modules in which the constructor method is defined using the SC_CTOR macro must not 
contain any SC_HAS_PROCESS() statement.  
 
 
Examples: 
 
 // Deriving a module: 

SC_MODULE( BaseModule ) { 
  sc_in< bool > reset; 
  sc_in_clk clock; 
  BaseModule ( const sc_module_name& name_  )  
    : sc_module( name_ )  
    {} 
}; 

  
  

class DerivedModule : public BaseModule { 
void newProcess(); 
SC_HAS_PROCESS( DerivedModule ); 
DerivedModule( sc_module_name name_ )  
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: BaseModule( name_ ) { 
    SC_CTHREAD( newProcess, clock.pos() ); 
    watching(reset.delayed() == true); 
} 

}; 
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4 Datatypes 
There are two kinds of types: fundamental types and compound types. Types describe objects, 
references, or functions.  
Alignment requirements mentioned in ISOC++ Section 3.9 are not relevant for synthesis. 
Likewise, the use of sizeof and memcpy to copy objects is not supported for synthesis. 

4.1 Fundamental Types 
Fundamental types are comprised of integer types and floating-point types. With the 
exception of wchar_t, all integer types are supported for synthesis. Floating-point numbers are 
not supported for synthesis. 

4.1.1 Integer Types 
The following integer types are supported for synthesis: 
• bool  
• unsigned char, signed char, char 
• unsigned short, signed short 
• unsigned int, signed int 
• unsigned long, signed long 
• unsigned long long, signed long long 
 
All the integer types with the exception of signed/unsigned long long are part of ISOC++ 
(Section 3.9.1). The long long types are part of the more recent ISOC (Section 6.2.5) and are 
already supported in most C++ compilers. 
 
The integer type wchar_t is not supported. For synthesis, the plain char (neither signed nor 
unsigned) are treated as signed char.  This is a synthesis refinement since ISOC++ specifies 
that whether a plain char is treated as signed or unsigned is implementation dependent 
(ISOC++ Section 3.9.1). 
 

4.1.1.1 Representation 
Integer types are represented using 2’s complement. This is a synthesis refinement since 
ISOC++ leaves the representation open (ISOC++ Section 3.9.1, Paragraph 7). 
 
 The representation and the bitwidth of an integer type determine its numerical range and its 
overflow behavior. Synthesis may choose alternative representations for internal objects (not 
part of the interface of the design) of C integer types provided the I/O behavior of the design 
is unchanged. 
 
 

4.1.1.2 Bit sizes 
The bit sizes for the different integer types adhere to the requirements set forth by the 
ISOC++ and ISOC standards and are implementation dependent. However, synthesis tools are 
required to support the size settings for the platforms for which the synthesis tool is supported 
in order to guarantee consistency between simulation and synthesis on the working platform.  
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The table below provides an overview of the ISOC++ requirements and bits sizes for integer 
types used on most compilers for popular computer platforms. Note that ISOC++ Section 
3.9.1 requires the signed and unsigned (and plain in the case of characters) versions of integer 
types to have the same storage. ISOC++ Section 3.9.1 also constrains the relative sizes of the 
different integer types. The minimum sizes are derived from the minimum required numerical 
limits as specified by ISOC Section 5.2.4.2. 
 

Integer  
Type 

Relative  
Requirement 

Minimum 
Req 
(bits) 

Most 
popular 
current 

compilers 
(bits) 

(un)signed char, char  8 8 
(un)signed short bits(short) ≥ bits(char) 16 16 
(un)signed int bits(int) ≥ bits(short) 16 32 
(un)signed long bits(long) ≥ bits(int) 32 32/64 
(un)signed long long bits(long long) ≥ bits(long) 64 64 

 
The maximum and minimum values that an integer type holds is specified in a specialization 
of the standard template numeric_limits described in ISOC++ Section 18.2 and are specified 
in the header <climits>. The <climits> header contains the macros for the maximum and 
minimum values for integer types. For example, INT_MIN and INT_MAX define the 
numerical limits for signed int. The ISOC standard specifies minimum requirements for the 
maximum and minimum values. For instance, INT_MIN should be less or equal than -(215- 1) 
(most popular current compilers use -231) and INT_MAX should be greater or equal than (215- 
1) (most popular current compilers use 231-1). 
   

4.1.2 Type Conversions 
ISOC++ defines two kinds of conversions between integer types that are applied in the 
evaluation of expressions: integer promotions, and usual arithmetic conversions. An example 
of an integer promotion is when a short is promoted to an int in the unary minus expression “-
a” (variable “a” is of type short). An example of a usual arithmetic conversion is when 
operand of type short is converted to long long in the expression “a+b” where “a” is of type 
short and “b” is of type long long. In that case “a” is first promoted to type int (integer 
promotion that is performed as part of the usual arithmetic conversion) and then converted to 
long long. 

4.1.2.1 Integer Promotions 
• The rules for integer promotions are identical to those defined for C++ (ISOC++ 

Section 4.5).  

4.1.2.2 Usual Arithmetic Conversions 
Usual arithmetic conversions are defined by the C++ language to yield a common type for 
many binary operators that expect operands of arithmetic or enumeration type. The 
conversion rules specified by ISOC++  (ISOC++ Section 5) apply to synthesis with the 
exception of the conversion rules related to builtin floating point types since they are not 
supported for synthesis. 
Usual arithmetic conversions for synthesis are defined as follows: 
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• First, Integer promotions are performed on both operands. 
• Then, If either operand is unsigned long long, the other operand is converted to 

unsigned long long 
• Otherwise, If either operand is long long, the other operand is converted to long long 
• Otherwise, if either operand is unsigned long, the other operand is converted to 

unsigned long 
• Otherwise, if either operand is long, the other operand is converted to long 
• Otherwise, if either operand is unsigned, the other operand is converted to unsigned 

int 
• Otherwise, no conversion as both operands must be int. 

 
The rules outlined above differ from the ISOC++ definition in that floating-point operands are 
not considered (as they are not supported for synthesis) and the rules for long long and 
unsigned long long were added (they are not part of the ISOC++ standard yet). 
 

4.1.3 Operators 
In this section we will use the following functions to explain the conversions that take place 
when integer expressions are evaluated in C++: 
• function int_prom(type t): returns the type resulting from integer promoting type t 
• function arith_conv(type t1, type t2): returns the type resulting from applying the usual 

arithmetic conversion to the pair of types t1 and t2. 
• function type(variable v): returns the type of variable v 
• function size(type t) : returns the size in bits for type t. 
• function cast(type t, value v): returns the value resulting from casting value v with type t. 
 

4.1.3.1 Operators : a<<b (shift to left of 'b' bits for the value of 'a'), a>>b (shift to right 
of 'b' bits for the value of 'a') 

 
For both right and left shifts, the type of the result is that of the integer promoted left operand 
(ISOC++ Section 5.8). The behavior is undefined if b is negative or greater than or equal to 
the length of type(result).  
 
Note: compilers are not consistent on the implement the undefined behavior. For example, shifts on long long 
(64-bits) may be implemented on 32-bit architectures in a number of ways with the available machine 
instructions yielding non-obvious results for shifts outside the defined range.  
  
For right shifts, if the first operand has a signed type, the sign bit is shifted in. This is a 
synthesis refinement on ISOC++ since the standard leaves the behavior implementation-
defined when the first operand is negative. 
 

prom_type = int_prom(type(a)) 
A = cast(a, prom_type) 
result( a << b ) = cast( A << b, prom_type)   when 0 ≤ b < size(prom_type) 
result( a >> b ) = cast( A >> b, prom_type)   when 0 ≤ b < size(prom_type) 

 

4.1.3.2 Operator: +a (unary plus) 
The type of the result is that of the integer promoted operand (ISOC++ Section 5.3.1): 
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prom_type = int_prom(type(a))  
result(+a) = cast(a, prom_type) 

- 

4.1.3.3 Operator: -a (unary minus) 
The type of the result is that of the integer promoted operand (ISOC++ Section 5.3.1): 
 

prom_type = int_prom(type(a))  
result(-a) = cast(-cast(a, prom_type), prom_type) 

4.1.3.4 Operators: a+b (addition of a and b) and a-b (subtract b from a) 
The usual arithmetic conversions are performed for the operands. The type of the result is 
given by the arithmetic conversion: 
 

prom_type = arith_conv(type(a), type(b)) 
A = cast(a, prom_type),  B = cast(b, prom_type)  
result(a+b) = cast( A + B, prom_type) 
result(a-b) = cast( A – B, prom_type) 

 

4.1.3.5 Operator : a*b (product a times b) 
The usual arithmetic conversions are performed for the operands. The type of the result is 
given by the arithmetic conversion (ISOC++ Section 5.6): 
 

prom_type = arith_conv(type(a), type(b))  
A = cast(a, prom_type),  B = cast(b, prom_type) 
result(a*b) = cast( A * B, prom_type) 

 

4.1.3.6 Operators: a/b (division: a divided by b), a%b (remainder) 
 
The usual arithmetic conversions are performed for the operands. The type of the result is 
given by the arithmetic conversion: 
 

prom_type = arith_conv(type(a), type(b)) 
A = cast(a, prom_type),  B = cast(b, prom_type) 
result(a/b) = cast((b==0) ? (DONT_CARE) : trunc_zero(A / B), prom_type) 

  result(a%b) = cast((b==0) ? (DONT_CARE) : A - trunc_zero(A / B) * B, 
prom_type) 
 
ISOC++ specifies that the result is undefined when the second operand is zero. For synthesis 
such behavior could be used as a don’t care value that may be exploited to optimize the 
hardware. The result of the division is truncated towards zero which implies -a/b ==a/-b ==-
(a/b). Truncation towards zero is a synthesis refinement  with respect to ISOC++ (Section 
5.6). The synthesis behavior is consistent with the behavior specified in ISOC (Section 6.5.5). 
 

4.1.3.7 Operator ~a (bitwise complement of a) 
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The type of the result is that of the integer promoted operand (ISOC++ Section 5.3.1): 
 

prom_type = int_prom(type(a))  
result(~a) = cast(~cast(a, prom_type), prom_type) 

   

4.1.3.8 Operators a&b (bitwise AND), a|b (bitwise inclusive OR), a^b (bitwise 
exclusive OR) 

The usual arithmetic conversions are performed for the operands. The type of the result is 
given by the arithmetic conversion (ISOC++ Sections 5.11, 5.12, 5.13): 
 

prom_type = arith_conv(type(a), type(b))  
A = cast(a, prom_type),  B = cast(b, prom_type) 
result(a OP b) = cast( A OP B, prom_type) 

- 

4.1.3.9 Relational and equality operators <, >, <=, >=, ==, != 
The usual arithmetic conversions are performed for the operands. The type of the result is 
bool (ISOC++ Section 5.9): 
 

prom_type = arith_conv(type(a),type(b)) 
A = cast(a, prom_type),  B = cast(b, prom_type) 

 result(a OP b) = cast( A OP B, bool) 
 

4.1.3.10 Conditional operator a?b:c (for cases where b and c are integer or enumeration 
types) 

 
The usual arithmetic conversions are performed for the operands. The type of the result is 
given by the arithmetic conversion: 
 

prom_type = arith_conv(type(b), type(c)) 
B = cast(b, prom_type),  C = cast(c, prom_type)  
result( a ? b : c)  = cast( a ? B : C, prom_type) 

 
Only one of b or c is evaluated. All side effects of the first expression except for destruction 
of temporaries happen before the second or third expression are evaluated (ISOC++ Section 
5.16). 

4.1.3.11 Increment and decrement operators a++, ++a, a--, --a, --a 
The type of result of the pre or post increment/decrement operation is the type of the operand. 
For integer operands excluding bool the increment and decrement operators are defined as 
follows: 
 

result(a++) = a,     side_effect(a++): a = cast(a+1, type(a)) 
result(++a) = cast(a+1, type(a)),  side_effect(++a): a = cast(a+1, type(a))  
result(a--) = a,   side_effect(a--): a = cast(a-1, type(a)) 
result(--a) = cast(a-1, type(a)) side_effect(--a): a = cast(a-1, type(a)) 
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The increment and decrement operators are not supported for operands of type bool. This is a 
synthesis refinement since ISOC++ does allow incrementing of operands of type bool 
(though ISOC++ deprecates its use). 
See ISOC++ Sections 5.2.6 and 5.3.2 for further details. 
 

4.1.4 Floating Point Types 
Floating-point types are not supported.  
Synthesis of the floating-point types used in C++ presents verification challenges. The 
simulation of the generated hardware has to be compared to the C++ behavior running in a 
processor. While most platforms conform to the IEEE 754 stardard, this is not sufficient as 
the IEEE 754 standard allows different implementations to produce different results [10]. The 
main reason for such differences is that intermediate results may be placed in destinations that 
are beyond the user's control. For instance a destination of an intermediate floating-point 
computation may be a 64-bit double in memory or an internal 80-bit register in a processor. 
Differences in processor architectures and in compiler optimizations may lead to differences 
in results. If the program uses floating-point comparisons to select what branch of code to 
execute, the differences may be indeed be very difficult to account for by a verification 
methodology. 

4.2 Compound Types 
Compound types in C++ are described in ISOC++ Section 3.9.2.  They can be recursively 
constructed as follows: 

• arrays of objects of a given type 
• classes (class, struct, union) 
• functions 
• pointers to void or objects or functions (including static members of classes) of a 

given type 
• references to objects or functions of a given type 
• enumerations 
• pointers to nonstatic class members 

 
with some restrictions given in ISOC++ Sections 8.3.1, 8.3.2, 8.3.4 and 8.3.5. 
  
 

4.2.1 Arrays 
The element type of an array must be any of the types which are permitted by the ISOC++ 
standard as element type, excluding pointers, and which are supported for synthesis, or any 
SystemC data type which is supported for synthesis, and which conforms to the requirements 
on element types stated in the ISOC++ standard. In addition, the synthesis subset supports 
declaration of arrays of signals and arrays of ports in any place where SystemC permits the 
declaration of signals and ports. Any declaration of an array must include the specification of 
its bound, either explicitly, if no initializer is specified, or as implication from the initializer, 
if such is specified. 
 

4.2.2 Pointers 
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Pointers that are statically determinable are supported for synthesis. Otherwise, they are not 
supported.  Statically determinable implies that during compilation, synthesis is able to 
determine the actual object whose address is contained by the pointer. If the pointer points to 
an array, the size of the array must also be statically determinable. Pointer arithmetic is not 
allowed. Testing that a pointer is zero is not allowed. The use of the pointer value as data is 
not allowed. For example, hashing on a pointer is not supported for synthesis.  

4.2.3 References 
Supported as defined in ISOC++. 

4.2.4 Enumerations 
 
Supported as defined in ISOC++. 
 

4.2.5 Pointers to Nonstatic Class Members 
Supported subject to the limitations described in section 4.2.2 on pointers.  
 

4.3 CV-qualifiers 
Fundamental and compound types are cvunqualified types. Each cvunqualified complete or 
incomplete object type has three corresponding cvqualified versions of its type: a const-
qualified version, a volatile-qualified version, and a const-volatile qualified version.  
 
The cvqualified type of any supported type is also supported. 

4.4 System C Datatypes 
System-C provides a number of datatypes that are useful for hardware design. These 
datatypes are implemented as C++ classes.  
 
The datatypes that are supported for synthesis are: 
• Numerical 
• Integer Types 

• sc_int:  finite precision signed  (conditioned on better definition)  
• sc_uint: finite precision unsigned (conditioned on better definition) 
• sc_bigint: arbitrary precision signed 
• sc_biguint: arbitrary precision unsigned 

• Fixed-point Types 
• sc_fixed: arbitrary precision signed 
• sc_ufixed: arbitrary precision unsigned 

• Bit Vector Type: sc_bv 
 

• Logic (4-valued):  
• sc_logic 
• sc_lv 

 
All datatypes supported for synthesis have vector length/precision that is specified by 
template parameters. Thus their vector length/precision is statically determinable during 
compilation.  
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Editorial Note: there are a number of issues or/and inconsistencies between the datatypes that 
appear to be the product of an implementation that comes from different sources and the 
absence of a well defined LRM. These issues are flagged in bold face throughout this 
document. The finite precision integers sc_int/sc_uint in particular have a number of issues 
that should be resolved before it could be considered for synthesis. 

4.4.1 Integer Types 
The SystemC datatype package defines integer types that allow the selection of any bitwidth. 
Both signed and unsigned versions are available: 

• sc_bigint<W>:  arbitrary precision signed integer 
• sc_biguint<W>: arbitrary precision unsigned integer 
• sc_int<W>: finite precision signed integer  (W ≤ 64) 
• sc_uint<W>: finite precision unsigned integer (W ≤ 64) 

 
The finite precision versions are available for more efficient simulation but are limited to 64 
bits.  Otherwise they are semantically identical to the arbitrary width integer datatypes (note: 
not true today, filed a bug report for inconsistency when mixing signed and unsigned 
operands). The compile flag _32BIT_ is not supported as it is not even mentioned in the 
LRM.  
Arbitrary precision datatypes do have an implementation limit that may be changed with the 
compiler flag MAX_NBITS (note: LRM does not mention this limit). It is assumed that this 
limit is set higher than any bit-width of any operand so that synthesis need not consider the 
effects due to the implementation limit. 
Signed integers types are stored in 2’s complement form and all arithmetic is done in 2’s 
complement.  
 
The integer types support the following operators: 
 
Op Category Operators/Methods 
Arithmetic + - * / %  
   Assign += -= *= /= %=  
   Unary + -     
   Auto Incr/dec ++ prefix ++ postfix -- prefix  -- postfix   
Bitwise & | ^    
   Assign &= |= ^=    
   Unary ~      
Relational == != < <= > >= 
Shift >> << >>= <<=   
Bit Select [x]      
Part Select (i,j)      
Concatenation (,)      
Conv to C integer to_int to_long to_int64 to_uint to_uint64 to_ulong 
Assignment =      
 
Arithmetic, shift and bitwise operations generate intermediate values that do not lose 
precision other than when they reach the precision limits (64 bits) in the case of limited 
precision integer types.  
Two operand arithmetic, bitwise and relational operators take any of the integer C++ types, in 
addition to SystemC integer types, as one of their operators (second argument for assign 
version of the operators). 
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The table below shows additional methods that are supported for synthesis. The table also 
shows alternatives ways to get the same functionality.   
  

Methods Alternatives 
iszero  x == 0 
sign x < 0 
bit x[i] 
range x(i,j) 
reverse x = x(0, W-1)   (??see part select) 
test x[i] 
set x[i] = 1 
clear x[i] = 0 
invert x[i] = !x[i] 
length (template parameter) 

 

4.4.1.1 Arithmetic Operators 
Subtraction and unary minus always generates a signed value. All other operators generate 
signed values if at least one of the operand(s) is signed, otherwise they generate an unsigned 
value.  
Arithmetic operations with two operands can take any of the integer C++ types as one of the 
arguments (second argument for arithmetic assign operations). 

4.4.1.2 Bitwise Operators 
The unary operator ~ is the one’s complement operator. The return value for ~x is one’s 
complement of x which is equal to (–x-1). As the representation is 2’s complement this is 
equivalent to complementing every bit on a signed representation of the value. For instance  
~((sc_biguint<8>)128) = ~((sc_bigint<9>)128) = -129. 
The binary operators &, | and ^ compute the bitwise and or and xor operations. If either of the 
operands is signed, and the other operand is unsigned, the unsigned operand is first 
represented as a signed operand (by adding a bit of precision). If the bit-widths of the two 
operands are not the same, the shorter operand is extended to match the length of the other 
operand. The type of the result is unsigned if both operands are unsigned, otherwise it is 
signed. 

4.4.1.3 Relational Operators 
The relational operators compare the two operands as in C++ and return a value of type bool. 
The comparison is done arithmetically. 

4.4.1.4 Shift Operators 
The shift operators take a C++ int type value as their second operand (shift value). Operator 
<< and operator >> define arithmetic shifts, not bitwise shifts, i.e., no bits are lost and proper 
sign extension is done. 
The shift value should be nonnegative (this is inconsistent with fixed-point datatypes 
where negative shift values are implemented as shifts in the opposite direction). For 
sc_bigint/sc_biguint, a negative shift is equivalent to a zero shift. For sc_int/sc_uint, the shift 
is effectively implemented as a shift of a  64-bit C integer. Both negative shifts and shifts ≥ 64 
are governed by the rules of integer shifts in C and are implementation dependent 
(inconsistency between sc_bigint/sc_biguint and sc_int/sc_uint). 
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Note: the second operand should be of unsigned type to guarantee that the inferred hardware 
is minimal. Otherwise, whether minimal hardware is inferred depends on the analysis 
capabilities of the synthesis tool for proving that the shift value is never negative or never 
positive. 

4.4.1.5 Assignment Operator 
All defined assignment operators are supported. 

4.4.1.6 Bit Select Operator 
The bit select operator[i] allows the selection of a bit of a variable either as an rvalue or an 
lvalue, e.g. 
 x[3] = y[2]; 
 
The use of the bit select operator on a temporary (unless it is explicitly cast to sc_int/sc_uint 
or sc_bigint/sc_biguint) is deprecated given that it is not consistently supported in SystemC. 
For example,  sc_int/sc_uint does not support the bit select operator on a temporary, 
sc_bigint/sc_biguint supports it for arithmetic operators (e.g., (a*b)[7]) but not for some 
operators (e.g., concatenation). 
The index may be outside the range [0, W-1] for sc_bigint/sc_biguint, but not for 
sc_int/sc_uint (Not clear from the LRM whether this is intended or not, need to resolve 
inconsistency). If the index ≥ W then 0 is returned for unsigned numbers and the MSB bit is 
returned for signed numbers. If the index is negative, then the LSB bit is returned. 

4.4.1.7 Part Select Operator 
The part select or range operator (i,j) allows the selection of a bit slice of the variable either as 
an rvalue or an lvalue, e.g. 
 x(5,3) = y(4,2); 
 
The use of the range operator on a temporary (unless it is explicitly cast to sc_int/sc_uint or 
sc_bigint/sc_biguint) is deprecated given that it is not consistently supported in SystemC. For 
example, sc_int/sc_uint does not support the range operator on a temporary, 
sc_bigint/sc_biguint supports it for arithmetic operators (e.g., (a*b)(7,5)) but not for some 
operators (e.g., concatenation). 
 
A reverse range may be used, e.g., x(0,3) (supported for sc_bigint/sc_biguint but not 
supported for sc_int/sc_uint, not specified in LRM, not clear whether it is bug or intended 
behavior, need to resolve inconsistency). 
 
The  range can exceed the range of the variable for sc_bigint/sc_biguint but not for 
sc_int/sc_uint. (Not clear from the LRM whether this is intended or not, need to resolve 
inconsistency). If either range value is larger than the MSB index (W-1), then the bits with 
index ≥ W get either 0 for unsigned numbers or the MSB bit for signed numbers. If either 
range value is negative, it is changed to zero. 
 
The use of dynamic values for the range may be restricted for synthesis as the length of the 
range needs to be statically determinable. 

4.4.1.8 Concatenation Operation 
The concatenation operation (op1,op2) may be used an rvalue or an lvalue, e.g. 
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  (x, y) = (z, w); 
 
Because of the difference in return types for operators for sc_bigint/sc_biguint and 
sc_int/sc_uint, using expressions (unless they are cast) may give different results for arbitrary 
precision integers than for finite precision integers. Using uncast expressions other than 
concatenation, bit select and part select  as arguments of the concatenate operation is 
deprecated. 
 

4.4.1.9 Unsupported Methods 
The following methods are not supported for synthesis: 

• Underlying classes such as sc_signed, sc_unsigned, sc_int_base are not directly 
synthesizable. They are part of the SystemC implementation for the synthesizable 
types. 

• The explicit conversion to_double() is not supported as the C++ type double is not 
supported for synthesis. 

• Methods set_packed_rep, get_packed_rep 
 

4.4.2 Fixed-point Types 
The SystemC datatype package supports fixed-point types with arbitrary precision and with a 
variety of quantization and overflow modes. The types support both signed and unsigned 
fixed-point datatypes: 
• sc_fixed<wl, iwl, qmode, o_mode, n_bits> 
• sc_ufixed<wl, iwl, qmode, o_mode, n_bits> 
 
The first two template parameters together determine the precision of the integer and 
fractional parts of the fixed-point number. The first template argument wl is the overall 
bitwidth of the fixed-point number. The second template argument iwl is the position of the 
binary point relative to the most significant bit. If iwl is positive it is the bitwidth of the 
integer part. The ranges are as follows: 
 
• sc_fixed:  [-2(iwl-1) , 2(iwl-1) – 2-fwl ] 
• sc_ufixed:  [0, 2iwl – 2-fwl] 
 
where fwl = wl-iwl. The rightmost bit is the LSB(0), and the leftmost bit is the MSB(wl-1). 
 
The third template argument qmode determines the quantization mode used. The fourth and 
fifth template arguments determine the overflow mode. These modes are summarized in the 
tables below.  
 

Overflow Mode Parameters 
Wrap-around Basic (default) o_mode = SC_WRAP, n_bits = 0 
Saturation o_mode = SC_SAT 
Symmetrical Saturation o_mode = SC_SAT_SYM 
Saturation to Zero o_mode = SC_SAT_ZERO 
Wrap-around Advanced o_mode = SC_WRAP, n_bits > 0 
Sign Magnitude Wrap-Around o_mode = SC_WRAP_SM,  n_bits ≥ 0 
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Quantization Mode Parameter 
Truncation (default) q_mode = SC_TRN 
Rounding to plus Infinity q_mode = SC_RND 
Truncation to zero q_mode = SC_TRN_ZERO 
Rounding to zero q_mode = SC_RND_ZERO 
Rounding to minus infinity q_mode = SC_RND_MIN_INF 
Rounding to infinity q_mode = SC_RND_INF 
Convergent rounding q_mode = SC_RND_CONV 

 
Quantization and overflow are performed only when loss of precision is required: casts and 
assignments. Intermediary values do not require loss of precision. The exception is the divide 
operator that would potentially require an infinite number of bits. An internal implementation 
limit (compiler flag) SC_FIXDIV_WL bounds the number of bits that are computed for 
division.  Another implementation limit (compiler flag) is SC_FXMAX_WL. It is assumed 
that precision is set high enough so that they don’t change the behavior of the design. 
Synthesis will assume that these limits are not present. 
 
 All quantization/overflow modes are supported for synthesis. Should any be excluded from 
minimum subset? 
 
Op Category Operators/Methods 
Arithmetic + - * /   
   Assign += -= *= /=   
   Unary + -     
   Auto Incr/dec ++ prefix ++ postfix -- prefix  -- postfix   
Bitwise & | ^    
   Assign &= |= ^=    
   Unary ~      
Relational == != < <= > >= 
Shift >> << >>= <<=   
Bit Select [x]      
Part Select (i,j)      
Conv to C integer to_int to_long to_int64 to_uint to_uint64 to_ulong 
Assignment =      
 
The table below shows additional methods that are supported for synthesis. The table also 
shows alternatives ways to get the same functionality.   
 

Methods Alternatives 
is_zero  x == 0 
is_neg x < 0 
b_not ~ 
b_and & 
b_or | 
b_xor ^ 
lshift << 
rshift >> 
neg unary - 
bit x[i] 
range x(i,j) 
wl template argument 1 
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iwl template argument 2 
o_mode template argument 3 
q_mode template argument 4 
n_bits template argument 5 

 

4.4.2.1 Arithmetic Operations 
 
Subtraction and unary minus always generates a signed value. All other operators generate a 
signed value if at least one of the operand(s) is signed, otherwise they generate an unsigned 
value.  
 
The autoincrement/autodecrement operators x++, ++x, x--  and  --x  have the semantics as 
follows where T_x is the type of variable x: 
 

Operator Equivalent Behavior 
x++ T_x  t = x; x += 1; return t; 
++x x += 1; return reference to x; 
x-- T_x  t = x; x -= 1; return t; 
--x x -= 1; return reference to x; 

 
The division (/) operator is problematic for synthesis because the required output precision 
can not be deduced from the precision of its operands. Unless the operation is immediately 
cast or assigned the required precision may be hard to deduce resulting in an unnecessarily 
large hardware divider. The division assign (/=) operator is well defined because the target 
precision is given by the first operand.  

4.4.2.2 Bitwise Operators 
The unary ~ operator complements the bits of the mantissa (it differs from the SystemC 
integer types: ~((sc_ufixed<8,8>) 128) != ~((sc_biguint<8> 128)). 
The binary operations &, | and ^ compute the bitwise and, or and xor operation respectively. 
Mixing of signed and unsigned operators is not allowed (a difference compared with SystemC 
integer types). For binary operations, the two operands are aligned by the binary point and the 
operands extended so that they have the same word and fractional length before the operation 
is performed.  

4.4.2.3 Relational Operators 
The relational operators compare the two operands as in C++ and return a value of type bool. 
The comparison is done arithmetically. 

4.4.2.4 Shift Operators 
The shift operators take a C++ int type value as their second operand (shift value). If the shift 
value is negative the first operand is shifted in the opposite direction.  Operator << and 
operator >> define arithmetic shifts, not bitwise shifts, i.e., no bits are lost and the appropriate 
sign extension is done.    
Note: It is advisable to make the second operand be of unsigned type to guarantee that the 
inferred shifter is unidirectional. Otherwise, whether a bidirectional or unidirectional shifter is 
inferred depends on the analysis capabilities of the synthesis tool for proving that the shift 
value is never negative or never positive. 
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4.4.2.5 Bit Select Operator 
The bit select operator[i] allows the selection of a bit of a variable either as an rvalue or an 
lvalue, e.g., 
 bool x = y[2] & z[5]; 

x[3] = 1; 
 
The use of the bit select operator on an expression (unless it is explicitly cast to 
sc_fixed/sc_ufixed) is deprecated given that it is not consistently supported in SystemC  (see 
Section 4.4.1.6)   
Index values outside the range [0, W-1] are invalid. Synthesis may assume that all index 
values are in their valid ranges. 
 

4.4.2.6 Part Select Operator 
The part select or range operator (i,j) allows the selection of a bit slice of the variable either as 
an rvalue or an lvalue, e.g., 
 x(5,3) = y(4,2); 
 
The use of the range operator on a temporary (unless it is explicitly cast to sc_fixed/sc_ufixed) 
is not supported in SystemC. The result of a part select can not be directly assigned to a fixed 
point variable, but it can be assigned to a range: 
 
 x = x(0, W-1);  // not supported  
 x(W-1,0) = x(0,W-1);  // OK 
 
The range may be reversed. Index values outside the range [0, W-1] are invalid (this 
behavior is inconsistent with sc_bigint/sc_biguint). Synthesis may assume that all index 
values are in their valid ranges. Synthesis may impose additional requirements that the length 
of the range be statically determinable. 

4.4.2.7 Assignment Operators 
All defined assignment operators are supported. 

4.4.2.8 Unsupported Methods/Options 
 
The following options and methods are not synthesizable: 
• Methods intended for internal use: overflow_flag, quantization_flag, type_params, get_bit, 

set_bit, get_slice, set_slice, get_rep, lock_observer, unlock_observer, observer_read, 
value and is_normal are not supported. 

• Methods cast, cast_switch and observer are not supported.  
• The SC_OFF option to turn casting off. 
• The semantics due to limits to precision given by SC_FXMAX_WL, SC_FIXDIV_WL 

and SC_FXCTE_WL  since that semantics requires normalization (which should be 
avoided in hardware implementations of fixed point computation). 

• Explicit conversion to C++ floating point types to_double and to_float since neither type 
is supported for synthesis. 
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4.4.2.9 Non Synthesizable Classes  
The following System C classes related to fixed point datatypes are not synthesizable: 
• Fixed Point related: 

• Limited Precision fixed-point types used for faster simulation 
• sc_fixed_fast 
• sc_ufixed_fast 
They use double and have a limited precision of 53 bits.  They are not bit accurate 
with sc_fixed/sc_ufixed since normalization will determine which 53 bits are kept.  

• Unconstrained types and related context classes  
• sc_fix 
• sc_ufix 
• sc_fix_fast 
• sc_ufix_fast 
• sc_fxcast_context 
• sc_fxcast_swith 

• Arbitrary precision value 
• sc_fxval 
• sc_fxval_fast 

• Observer types 
• sc_fxnum_observer 
• sc_fxnum_fast_observer 
• sc_fxval_observer 
• sc_fxval_fast_observer 

4.4.3 Bit Vectors 
The arbitrary width bit-vector type is sc_bv<W>. This type has two values ‘0’ and ‘1’ which 
interpreted as false and true respectively. Single bit values are represented using the C++ type 
bool. The rightmost bit is the LSB(0), and the leftmost bit is the MSB(width-1). 
 
The operations that are supported for synthesis are listed in the table below. 
 
Op Category Operators/Methods 
Bitwise & | ^    
   Assign &= |= ^=    
   Unary ~      
Relational == !=     
Shift/Rotate >> << >>= <<= lrotate(i) rrotate(i) 
Bit Select [x]      
Part Select (i,j)      
Concatenation (,)      
Conv to C integer to_int to_long to_int64 to_uint to_uint64 to_ulong 
Assignment =      
Reduce and_reduce or_reduce xor_reduce nand_reduce nor_reduce xnor_reduce 

 
There is no arithmetic defined for bit vectors and MSB zero padding is used to extend the 
vector when it is required to match the length of a second operand (in binary bitwise 
operations) or to match the length of the target.  
 
The table below shows additional methods that are supported for synthesis. The table also 
shows alternatives ways to get the same functionality. 
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Methods Alternatives 
length template parameter 
bit, get_bit x[i]  
set_bit x[i]  
range x(i,j) 
reverse x = x(0, W-1) 
b_not ~ 

 

4.4.3.1 Bitwise Operators 
The unary operator ~ complements every bit of the vector.  
The binary operators &, | and ^ compute the bitwise and or and xor operations. If the bit-
widths of the two operands are not the same, the shorter operand is extended by padding zeros 
to match the length of the other operand. 
 

4.4.3.2 Relational Operators 
The relational operators == and != return a bool to indicate whether the two vectors are equal 
or not equal respectively. Two vectors of different length are not equal.  

4.4.3.3 Shift Operators and Rotate Methods 
The shift operators take a C++ int type value as their second operand (shift value). A negative 
shift value is not allowed (runtime exception).  The result of a shift is a vector of the same 
length (shifts are not arithmetic, bits are lost). 
 
The rotate methods lrotate and rrotate rotate left and right respectively by the amount given 
by the integer argument.  

4.4.3.4 Bit Select Operator 
The bit select operator[i] allows the selection of a bit of a variable either as an rvalue or an 
lvalue, e.g., 
 x[3] = y[2]; 
 
Index values outside the range [0, W-1] are invalid. Synthesis may assume that all index 
values are in their valid ranges. 

4.4.3.5 Part Select Operator 
The part select or range operator (i,j) allows the selection of a bit slice of the variable either as 
an rvalue or an lvalue, e.g. 
 x(5,3) = y(4,2); 
 
The range may be reversed. Range bounds outside the range [0, W-1] are invalid. Synthesis 
may assume that all range bounds are in their valid ranges. 

4.4.3.6 Concatenation Operator 
The concatenation operation (op1,op2) may be used an rvalue or an lvalue, e.g. 
  (x, y) = (z, w); 
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4.4.3.7 Assignment Operator 
All defined assignment operators are supported. 

4.4.3.8 Reduce Methods 
The reduce operators and_reduce, or_reduce, xor_reduce, nand_reduce, nor_reduce and 
xnor_reduce return a result of type bool by applying the corresponding logical operation to all 
bits. 

4.4.4 Logic Types 

4.4.4.1 Logic Type  
The logic type is sc_logic and has four values: ‘0’, ‘1’, ‘X’ and ‘Z’ interpreted as false, true, 
unknown and high_impedence respectively. 
 
• Bitwise &(and) |(or) ^(xor) ~(not) 
• Assignment = &= |= ^= 
• Equality == != 

4.4.4.2 Unsupported Logic Constant 
The use of logic constant has restrictions for synthesis. 
 
• The unknown logic constant (sc_logic<W>("X")) is not supported for synthesis. 

Exceptionally a tool may use the unknown value assignment to specify an explicit don't-
care condition for the logic synthesis. This depends on the optimization capability of the 
synthesis tool. 

 
Example : 
   if (x == 0x00)  
      y = sc_logic<1>("0"); 
   else if(x == 0x01)  
      y = sc_logic<1>("1"); 
   else if (x == 0x10)  
      y = sc_logic<1>("0"); 
   else  
      y = sc_logic<1>("X"); //don't-care condition        

 

 
• The high_impedence logic constant (sc_logic<W>("Z")) is synthesizable if and only if it 

appears in an expression assigned to a port variable directly. This expression should not 
include conditional expressions that contain equality operators for logic constant. 

 
 

4.4.4.3 Unsupported Methods 
The is_01(), to_bool() , value() methods don’t have any meaning for synthesis.  
The b_not method is not required as the operator ~ can be used instead. 

4.4.4.4 Arbitrary Width Logic Vectors 
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The arbitrary width logic vector type is sc_lv<W> with each element in the vector being 
having four types as the logic type sc_logic.  The rightmost bit is the LSB(0), and the leftmost 
bit is the MSB(width-1).  
 
Operations etc should be identical to sc_bv. 
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5 Declarations 

5.1 Declarations 
Most declarations are supported as used from C++. Specific restrictions and coding guidelines 
are listed in the subsequent sections and chapters. Use of linkage specification and inline 
assemply language constructs are not supported. 
 

 
Deprecated items 
Embedded assembler routines are not supported. 

 

5.1.1 Specifiers 
Supported as defined in ISOC++. 

5.1.1.1 Storage class specifiers 
Restricted support. 
 

1 The specifiers auto and register are hints to a C++ compiler and may be ignored by 
synthesis.  

2 The specifier mutable is supported as defined in ISOC++.  

3 The support of the specifier extern is limited as described in Section 5.1.4. 

The use of static is restricted (refer to section 12.1.4.2). 

5.1.1.2 Function specifiers 
The inline specifier is supported as defined in ISOC++. 
The explicit specifier is supported as defined in ISOC++. 
The virtual specifier is supported. Virtual functions are supported with the limitations 
described in Section 12.2.3 
 

5.1.1.3 The typedef specifier  
Supported as defined in ISOC++. 

5.1.1.4 The friend specifier 
Supported as defined in ISOC++. 

5.1.1.5 Type specifiers  
For restrictions on the use of types refer to the respective subsections. 

5.1.1.6 The cv-qualifiers 
Supported as defined in ISOC++. 

5.1.1.7 Simple type specifiers 
Restricted support. 
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Deprecated items 
Types w_char_t, float and double are not supported. 

5.1.1.8 Elaborated type specifiers  
Supported. 
 

elaborated-type-specifier ::= 
    class-key [ :: ] [ nested-name-specifier ] identifier 
  | enum [ :: ] [ nested-name-specifier ] identifier 
   | typename [ :: ] nested-name-specifier identifier 
  | typename [ :: ] [ nested-name-specfier template ] template-id 

5.1.1.9 SystemC type specifiers  
Extension. 
The following SystemC types are supported: 

sc_int 
sc_uint 
sc_bigint 
sc_biguint 
sc_logic 
sc_lv 
sc_bit 
sc_bv 
sc_fixed 
sc_ufixed 

 
(The biggest problem with fixed point data types seems to be the division operation on fixed 
point numbers, in particular which precision to use. It may be advisable to deprecate the use 
of the division operation on fixed point numbers.) 

 
For sc_fixed and sc_ufixed, the following rounding and overflow modes are supported : 
 
SC_RND 
SC_RD_ZERO 
SC_RND_MIN_INF 
SC_RND_INF 
SC_RND_CONV 
SC_TRN 
SC_TRN_ZERO 
 
SC_SAT 
SC_SAT_ZERO 
SC_SAT_SYM 
SC_WRAP 
SC_WRAP_SM 

5.1.2 Enumeration declarations 
Supported. 

5.1.3 The asm declaration 
Not supported. 

5.1.4 Linkage specifications 
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External linkage is not supported.  

5.2 Declarators 
Restricted support. 
Declarators are supported as defined in ISOC++ with the restriction that exception handling is 
not supported. 

5.2.1 Type names  
Restricted support. 
Type names are supported as defined in ISOC++ with the restriction that exception handling 
is not supported. 

5.2.2 Ambiguity resolution 
Supported as defined in ISOC++. 

5.2.3 Function parameters 
Function parameters are supported as defined in ISOC++ with the restriction that ellipsis are 
not supported. 

5.2.4 Default arguments 
Supported as defined in ISOC++. 

5.2.5 Initializers 
Restricted support. 
 
A non-const variable declaration located in the body of a module must not have an initializer 
and must not be initialized by means of a mem-initializer of the module constructor. 

If a variable declaration of class type is located in the body of a module the underlying class 
definition must not declare or inherit a default constructor or must declare or inherit an empty 
default constructor. For detail information and examples please refer to Section 9. 

5.2.5.1 Aggregates 
Initialization of aggregates is supported as defined in ISOC++. 

5.2.5.2 Character arrays 
Initialization of character arrays is supported as defined in ISOC++. Also see Section Error! 
Reference source not found. that covers support on type char. For synthesis, if the numerical 
value of the char has an effect on functionality (the exception being comparing chars for 
equality) characters are assumed to be encoded in the ASCII character set. This is a 
refinement over ISOC++ which allows alternative execution character sets. 

5.2.5.3 References 
Initialization of references is supported as defined in ISOC++. 
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6 Expressions 
An expression is a sequence of operators and operands that can result in a value. Expressions 
can cause side effects (ISOC++ Section 5). The order of evaluation of operands and the order 
in which side effects take place are unspecified by ISOC++, except when noted. For example 
the statement: 
 
 i = x[i++]; 
 
has a behavior that is not specified in ISOC++. Expressions that are legal in ISOC++ but 
whose behavior is unspecified due to order of evaluation or order of side effects are supported 
for synthesis. Synthesis tools are permitted to interpret such expressions in any way that is 
compliant with the ISOC++ standard. It is advised that user code avoid such expressions to 
avoid differences in results between simulation using any particular compiler and synthesis 
using any particular synthesis tool.  
 
The sizeof operator (ISOC++ Section 5.3.3) is not supported for synthesis.  The 
new (ISOC++ Section 5.3.4) and the delete operator (ISOC++ Section 5.3.5) are not 
supported for synthesis.  
 
Casting operators (ISOC++ Sections 5.2.7, 5.2.9, 5.2.10, 5.2.11) are supported within the 
constraints placed on the use of pointers.  The type identification function typeid (ISOC++ 
Section 5.2.8) is not supported. 
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7  Functions 

 
Functions may be declared/defined as part of a class type declaration, then being denoted as 
member functions. Functions may also be declared/defined within any namespace including 
the global namespace (::). 
Processes within modules are a special kind of function, and must obey special syntactic rules 
regarding declaration and definition.  
 

7.1  Function definitions 
Restricted support. 
Function definitions are supported as defined in ISOC++ with the restriction that specification 
of an exception-handling try block is not supported. 
 

7.2 Function body 
The body of a function is executed on a function call. The body of a function consists of a set 
of local declarations and a sequence of statements. 
 
The body of a function must adhere to the same rules as the region from where it is invoked. 
Supported sequential statements are described in section 9. Wait statements may be used in 
functions called from SC_CTHREAD processes, and may not be used in functions called 
from SC_METHOD processes. 
 
 Example: 

void 
foo( unsigned &x, const unsigned y, const unsigned z ) { 
 while ( x < z ) 
 { 
  x += z; 
  wait(); 
 } 
 } 
 
// definition of a thread process: 
void 
process ()  { 
 unsigned val = 0; 
 foo( val, 100, 4 );  // error: a function whose body contains wait 
                          // statements must not be invoked by a method   
                          // process 
} 
 
// definition of a thread process: 
void 
sprocess ()  { 
 unsigned val = 0; 
 wait(); 
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 while( true ){ 
  foo( val, 100, 4 );  // OK 
     }                      
} 
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8 Statements 
This section describes the different forms of sequential statements to be used in the 
synthesizable subset of SystemC. They are used to define algorithms for the execution of a 
subprogram or process; they execute in the order in which they appear. Statements as defined 
in ISOC++ are supported with the restriction that specification of an exception handling try 
block is not supported. In addition, the SystemC wait statement and signal assignment 
statements are supported.  

8.1 Labeled statement 
Labels are supported as defined in ISOC++. 

8.2 Compound statement 
 
The compound statement (also, and equivalently, called “block”) is supported as defined in 
ISOC++ to group sets of statements together. 
 

8.3 Wait statement 
Only simple wait statements with integer arguments must be used (default integer argument is 
1). The wait statements can only be used within threaded processes (SC_(C)THREAD) or 
within subprograms which are invoked by an SC_(C)THREAD. 
A wait statement causes the suspension of a process or subprogram statement until the next 
event occurs, on which the process is sensitive. 

8.4 Signal assignment statement 
A signal assignment statement must be used to assign values to signals or ports.  
 
Signal or port identifier must denote a variable of type sc_signal or of a port type that is 
declared in the surrounding module. The type of the expression must match the type that was 
used for declaration of the signal or port being assigned to.  
 
Note that a synthesis tool will have to perform some error and consistency checking: 

• Different signal assignment statements located in different processes must not write to 
the same signal or port, unless the target port or signal is of resolved vector type 
(sc_signal_rv, sc_in_rv, sc_out_rv, sc_inout_rv) . Resolved types are supported with 
restrictions as described in 4.4.4.2 

• Signals can only be assigned one value in between two events  
 

8.5 Selection statements 
 
Selection statements include if, if-else and switch statements.  
Selection statements are supported as defined in ISOC++. 

8.5.1 The if statement 
Supported as defined in ISOC++.  
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8.5.2 The switch statement 
Supported as defined in ISOC++; 

8.6 Iteration statements 
The iteration statements while, do and for are supported as defined in ISOC++. 

8.7 Jump statements 
The jump statements break, continue, return, and goto are supported as defined in ISOC++ 
 

8.7.1 The break statement  
 The break statement is supported as defined in ISOC++.  
 

8.7.2 The continue statement 
The continue statement is supported as defined in ISOC++. 

8.7.3 The return statement 
Restricted support. 
The return statement is supported as defined in ISOC++ with the restriction that a return 
statement may not occur within the function defining an SC_CTHREAD or SC_METHOD 
process. 
 

8.8 Declaration statement 
Declaration statements are supported as defined in ISOC++. 
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9 Processes 

9.1 Clock 

9.1.1 SC_CTHREAD 
SC_CTHREAD processes use the second parameter to address an sc_in< bool > type port 
declared in the sc_module as the clock port. And notice that one must specify this module to 
be positive or negative clock triggered by using the pos() or neg() specifier appended to the 
SC_CTHREAD second parameter. Notice that bool is a 2-value data type therefore only ‘0’ 
and ‘1’ values are allowed and no ‘Z’ and ‘X’ can be assigned to a clock port. 

9.1.2 SC_METHOD 
The second way to specify a clock is to declare sc_in_clk ports in a module. This usage is 
specifically for SC_METHOD type processes. For each sc_in_clk port it must be 
accompanied by a sensitive clause of exactly one process, where pos() or neg() specifiers 
must be used to indicate the clock edge triggering property. 

9.1.3 SC_THREAD 
SC_THREAD is not synthesizable, please read Section 9.5 for detail descriptions. And since 
SC_THREAD is not synthesizable so there is no need to discuss its clock property. 

9.1.4 Multiple Clocks 
It is possible to have multiple clock ports in one module. However a process can only be 
triggered by exactly one clock. A clock can trigger more than one process. 
 
. Example: 

SC_MODULE( MC ) { 
 sc_in< sc_uint<16> > x, y; 
 sc_out< sc_uint<16> > sum, diff; 

sc_out< sc_uint<32> > mul; 
 sc_in< bool > clk_ct; // The SC_CTHREAD clock 
 sc_in_clk clk_m; // Must be specified in a sensitive clause 
 
 void add() {  // This process is clocked by clk_m 
  sum = x + y; 
 } 
 void sub() {  // This process is clocked by clk_t 
  diff = x – y; 
 } 
 void multiply() { // This process is clocked by clk_ct 
  mul = x * y; 
 } 
 
 SC_CTOR( MC ) { 
  SC_METHOD( add ); 
  sensitive << clk_m.pos(); // Triggering edge must be specified 
 
  SC_METHOD( sub ); 
  sensitive << clk_m.neg(); // Triggering edge must be specified 
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  SC_CTHREAD( multiply, clk_ct.neg() ); 
       // Triggering edge must be specified 
 } 
}; 

 

9.2 SC_METHOD 
The body of a SystemC Method process (SC_METHOD) must not contain any wait statement 
or any invocation of a function which may directly or indirectly cause the execution of a wait 
statement. Consequently, it must not contain any loop which is not unrollable. 

9.2.1 Synthesis semantics 
Dependent on the coding style used within the body of a method process and dependent on 
the sensitivity list, a process may describe sequential logic as well as purely combinational 
logic. 

Example: 

SC_MODULE( L_AND ) { 
 sc_in< sc_logic > in_a, in_b; 
 sc_out< sc_logic > output; 
 
 void comb() {     // This process describes purely combinational logic. 
       
  output.write( in_a.read() & in_b.read() ); 
 } 
 
 SC_CTOR( L_AND ) { 
  SC_METHOD( comb ); 
  sensitive << in_a << in_b; 
 } 
}; 
 

Example: 

SC_MODULE( Counter ) { 
 sc_in_clk clk; 
 sc_in< bool > rst_n; 
 sc_in< bool > enable; 
 sc_out< unsigned int > val; 
 
 unsigned int countVar; 
 
 void seq() {     // This process describes sequential logic. 
  if ( !rst_n.read() ) { 
   countVar = 0; 
  } 
  else if ( enable.read() ) 
  { 
   countVar += 1; 
   val.write( countVar ); 
  } 
 } 
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 SC_CTOR( Counter ) { 
  SC_METHOD( seq ); 
  sensitive << rst_n.neg() << clk.pos(); 
 } 
}; 

 
 

9.3 SC_CTHREAD 
Each identifier used as event or in conjunction with pos() or neg() must denote a signal or port 
declaration in the same scope. 

Reset port specification is only supported in SC_CTHREAD type processes using a 
reset_signal_is(sc_in<bool>&, bool) clause. The first parameter addresses the reset port and 
the second parameter specifies this reset to be active high (true) or active low (false). 
Notice that one can only specify synchronous resets in IEEE 1666. 

Example: 

SC_MODULE( IIR ) { 
 sc_in< sc_uint<32> > x; 
 sc_out< sc_uint<32> > y; 
 sc_in< bool > clk; 
 sc_in< bool > reset; 
 
 void iir() {     // This process describes purely combinational logic. 
  … 
 } 
 
 SC_CTOR( IIR ) { 
  SC_CTHREAD( iir, clk.pos() );   // Pos. trig. clock 
  reset_signal_is( reset, false); // active low reset 
 } 
}; 

 

The structure of an SC_CTHREAD must prevent execution from ever reaching the end of the 
process. A common way to achieve this is to introduce an infinite loop. Each unbounded loop 
must contain at least one explicit wait() in each control path. Any behavior encountered prior 
to encountering the first wait is considered reset behavior. Any behavior after the first wait is 
considered operational behavior. Since the behavior inside the unbounded loop is consider 
operational behavior, the first wait that separates reset behavior from operational behavior 
must be located before the unbounded loop or is the first statement of the unbounded loop. 
Also notice that there may exist multiple waits before the unbounded loop. The following 
structures are suggested for SC_CTHREAD’s. A synthesis tool must at least support these 
structures. In addition, it may support any other structure which satisfies the above 
requirements. 
Examples: 

// Simple SC_CTHREAD structure for synthesis 
 void process() { 

 // reset 
  reset_behavior();  // must be executable in a single cycle 
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wait();           // first wait implies end of reset  
 // infinite loop 
 while (true) { 

         rest_of_behavior(); // must contain 1 wait per control path 
 } 

 } 
 
 // Reset reaches into infinite loop 
 void process() { 
     // reset 
     reset_behavior(); // must be executable in a single cycle 
     // infinite loop 
     while (true) { 
      // everything located here is also executed during a reset 
  wait();       // first wait() in process   
  rest_of_behavior(); // must contain 1 wait per control path 
     } 
 } 
     

The following alternatives are also supported for modeling the infinite loop: 
    for(;;) { }  
 and 
 do {} while (true);  
 

9.4 SC_THREAD 
SC_THREAD is non-synthesizable. SC_THREAD is blocking and can contain wait() 
statements that makes the process to wait on any signals in the sensitivity list. This also means 
an SC_THREAD process can be broken into stages by wait() statements. The non-blocking 
property of SC_METHOD makes it possible for synthesizers to synchronize input, 
computation and output. However in SC_THREAD this synchronization relationship is 
broken because it is hard for the synthesizer to synchronize inputs specified in wait() 
statements at different stages. Such input signal could be a clock or a reset. Without the 
support of reset_signal_is() in SC_THREAD it is hard for a synthesizer to synthesize the 
behaviour properly. 
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10 Submodule instantiation 
A submodule that is declared in the body of a module must be instantiated somewhere in the 
body of the module constructor or initialized by the constructor initializer.  
This is done by means of a submodule instantiation statement or member variables 
declaration. 
  
Ports can be connected to signals or other ports. This is done by means of port mappings. 
SystemC provides two slightly different mechanisms for mapping ports – positional mapping 
and named mapping –, which are both supported.  

 
Identifier must denote a sub module that is instantiated in a statement preceding the port 
mapping in a module constructor. The first id-expression in a named port binding statement 
must denote a port within any sub-module of the enclosing module. The second id-expression 
must denote a port or signal of the enclosing module. The types of the bound ports/signals 
must be identical. 
 
If a sub-module is declared using a pointer, the module constructor of the declaring module 
must contain a matching module-instantiation-statement, otherwise all module constructor 
definitions must include a matching mem-initializer.  

 
   ..... 
   SC_CTOR(some_module) : submodule_identifier( “string”)  , 
   ... { 
   // Constructor 
    } 
 
Submodule identifier must denote a module, which is declared somewhere in the body of the 
surrounding module. The string which is being passed as argument for the module 
instantiation is required by the module constructor but does not play any role for synthesis 
and therefore may be arbitrary chosen.  
Example: 
     SC_MODULE(MyModule) { 

sc_in_clk    CLK; 
sc_in<bool>  RST; 
sc_in<int>  a; 
sc_in<int>  b; 
sc_out<int> c; 
sc_out<bool> RDY; 
sc_signal<int> tmp; 
 
Adder add; 
GCD *gcd; 
 
SC_CTOR(MyModule): add(“add“) { 

add(a,b,tmp); 
gcd = new GCD(“GCD“); 
gcd->CLK(CLK); 
gcd->RST(RST); 
gcd->x(tmp); 
gcd->y(b); 
gcd->z(c) 
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gcd->RDY(RDY); 
} 

     }; 
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11 Namespaces 
Non-const global/shared variables are not supported for synthesis. Within a function body 
only those names of variables must be used, which are declared previously in the function 
body, or which are passed as parameters. Global constants are supported for synthesis. 
Example: 

namespace NSP { 
int var; 

 const int CNST = 42; 
} 
 
void foo( const int val ) { 
 using namespace NSP; 
 int dummy = CNST;    // OK. Note that the occurrence of name CNST  

                                // may be replaced by the value ‘42’ by a synthesis 
                                                                            // tool. 

dummy = var;      // error. The name of a variable being declared in 
                     // another namespace must not be used within a 
                     // function body. 
var = val;           // error. The name of a variable being declared in 
                     // another namespace must not be used within a 

                          // function body. 
}  

11.1.1 Namespace definition 
Namespace definition is supported as defined in ISOC++. 

11.1.2 Unnamed namespaces 
Supported as defined in ISOC++. 

11.1.3 Namespace member definitions 
Supported as defined in ISOC++. 

11.1.4 Namespace alias 
Supported as defined in ISOC++. 

11.1.5 The using declaration 
Supported as defined in ISOC++. 

11.1.6 Using directive 
Supported as defined in ISOC++. 

12 Classes 
Restricted support.  

 
Classes and structs have restricted support. Unions are not supported. 

12.1.1 Class names 
Supported as defined in ISOC++. 
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12.1.2 Class members 
Supported as defined in ISOC++. 

12.1.3 Member functions 
Supported as defined in ISOC++. 
 
Note: the term member function only refers to those functions being declared as member of a 
class or struct, but not to functions being declared as member of a module. 

12.1.3.1 Nonstatic member functions 
Supported as defined in ISOC++. 

12.1.3.2 The this pointer 
Supported as defined in ISOC++. 

12.1.4 Static members 
Restricted support. 

12.1.4.1 Static member functions 
The same restrictions and coding guidelines hold as for any other function. 

12.1.4.2 Static data members 
Only const static data members are supported. 

Example: 

class X { 
public: 

static int m1;             // error: non-const static data  
           // member is not supported 

  const static int m2 = 10;  // OK 
};  

  
 
 

12.1.5 Unions 
Not supported.  

12.1.6 Bit-fields 
Supported as defined in ISOC++. 

12.1.7 Nested class declarations 
Supported as defined in ISOC++. 

12.1.8 Local class declarations 
Supported as defined in ISOC++. 

12.1.9 Nested type names 
Supported as defined in ISOC++. 
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12.2  Derived classes 
Supported as defined in ISOC++. 

12.2.1 Multiple base classes 
Supported as defined in ISOC++. 

12.2.2 Member name lookup 
Supported as defined in ISOC++. 

12.2.3 Virtual functions 
Virtual functions are supported provided that when such functions are called  the type of the 
"this" object can be statically determined. 

12.2.4 Abstract classes 
Supported as defined in ISOC++. 

12.3 Member access control 
Supported as defined in ISOC++. 

12.3.1 Access specifiers 
Supported as defined in ISOC++. 

12.3.2 Accessibility of base classes and base class members 
Supported as defined in ISOC++. 

12.3.3 Access declarations 
Supported as defined in ISOC++. 

12.3.4 Friends 
Supported as defined in ISOC++. 

12.3.5 Protected member access 
Supported as defined in ISOC++. 

12.3.6 Access to virtual functions 
Supported as defined in ISOC++. 

12.3.7 Multiple access 
Supported as defined in ISOC++. 

12.3.8 Nested classes 
Supported as defined in ISOC++. 

12.4 Special member functions 
Restricted supported. 

12.4.1 Constructors 
Constructors of user defined classes are supported.  Only the exception is that a synthesis tool 
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shall not invoke the constructors of user defined classes, when the classes are used as type for 
signals and ports, or data members of a module.  All signals, ports, and data members of a 
module should be initialized in reset clause instead of in module constructors, otherwise, 
synthesis results may not match simulation results. 
Example: 

class X { 
public: 
  X() { 
    m_1 = 0; 
  } 
private: 
  int m_1; 
}; 
 
class XChild : public X { 
}; 
 
SC_MODULE(Module) { 
  sc_signal< X > xSig; 
  sc_signal< XChild > xChildSig; 
  sc_in_clk clk; 
  sc_in<bool> rst; 
 
  SC_CTOR(Module)  
   : xSig("xSig"),          // Warning! Not invoke xSig::xSig(). 
     xChildSig("xChildSig") // Warning! Not invoke  xChildSig::xChildSig(). 
  { 
     SC_CTHREAD(proc, clk.pos()); 
     watching(rst.delayed() == true); 
  } 
 
  void proc() { 
     // Reset clause 
     X x_tmp;               // OK. Invoke xSig::xSig(). 
     xSig = x_tmp;          // OK. Initialize xSig with x_tmp.  
     xChildSig = XChild();  // OK. Initialize xChildSig by the default 
constructor.  
     wait(); 
      
     // Main loop 
     while (true) { 
       ... 
     } 
  } 
}; 
 

 

12.4.2 Temporary objects 
Supported as defined in ISOC++. 

12.4.3 Conversions 
Supported as defined in ISOC++. 
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12.4.3.1 Conversion by constructor 
Supported as defined in ISOC++. 

12.4.3.2 Conversion functions 
Supported as defined in ISOC++. 

12.4.4 Destructors 
Supported as defined in ISOC++. 

12.4.5 Free store 
Not supported. 

12.4.6 Initialization 
Restricted support. 
Non-const members of modules must not be initialised by means of mem-initializers. 

12.4.6.1 Explicit initialisation 
Supported as defined in ISOC++. 

12.4.6.2 Initializing bases and members 
Supported as defined in ISOC++. 
 

12.4.7 Construction and destruction 
For construction the same rules as in C++ apply. Without support for destructors, destruction 
of objects, i.e. temporaries and local class instances, does not have any visible effect. 

12.4.8 Copying class objects 
Supported as defined in ISOC++. 
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13 Overloading 
Restricted support. (Some operators are excluded from overloading, others must follow 
certain coding guidelines, see Overloaded operators) 

13.1.1 Overloadable declarations 
Supported as defined in ISOC++. 

13.1.2 Declaration matching 
Supported as defined in ISOC++. 

13.1.3 Overload resolution 
Supported as defined in ISOC++. 

13.1.3.1 Candidate functions and argument lists 
Supported as defined in ISOC++. 

Function call syntax 
Supported as defined in ISOC++. 

Call to named function 
Supported as defined in ISOC++. 

Call to object of class type 
Supported as defined in ISOC++. 

Operators in expressions 
Supported as defined in ISOC++. 

Initialization by constructor 
Supported as defined in ISOC++. 

Copy-initialization of class by user-defined conversion 
Supported as defined in ISOC++. 

Initialization by conversion function 
Supported as defined in ISOC++. 

Initialization by conversion function for direct reference binding 
Supported as defined in ISOC++. 

13.1.3.2 Viable functions 
Supported as defined in ISOC++. 

13.1.3.3 Best Viable Function 
Supported as defined in ISOC++. 

Implicit conversion sequences 
Supported as defined in ISOC++. 
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Standard conversion sequences 
Supported as defined in ISOC++. 

User-defined conversion sequences 
Supported as defined in ISOC++. 

Ellipsis conversion sequences 
Not supported. 

Reference Binding 
Supported as defined in ISOC++. 

Ranking implicit conversion sequences 
Supported as defined in ISOC++. 

13.1.4 Address of overloaded function 
Address operations are not supported. 

13.1.5 Overloaded operators 
Supported as defined in ISOC++. 
 
The new, delete, new[] and delete[] operators are not supported. 
 
Classes which are used as type for signals and ports must define operator==. An assignment 
of an instance of a class to a signal or port of the same or any assignment compatible class is 
actually performed, only if a comparison by means of operator== of the actual value of the 
target signal or port and the source of the assignment returns ‘false’. Note that for proper 
functionality operator== must return ‘false’, if and only if target and source are different in 
at least one member.  

Example: 

class X { 
public: 

int m_1; 
  int m_2; 
 
  bool operator==( const X & obj ) { 
   return( false );   
  } 

}; 
 

class Y { 
public: 

int m_1; 
  int m_2; 
 
  bool operator==( const Y & obj ) { 
   return( true );   
  } 

};  
 



 

- 60 - 

class Z { 
public: 

int m_1; 
  int m_2; 
 
  bool operator==( const Z & obj ) {  
   if ( m_1 != obj.m_1 ) { 
    return( false ); 
   } else if ( m_2 != obj.m_2 ) { 
    return( false ); 
   } else { 
    return( true ); 
   } 
  } 

};  
 

sc_signal< X > xSig; // error: X::operator== does not compare members 
sc_signal< Y > ySig; // error: Y::operator== does not compare members 
sc_signal< Z > zSig; // OK: Z::operator== well defined 

  
 

Deprecated items 
The following operators are not supported: 

new | delete | new[] | delete[] 

13.1.5.1 Unary operators 
Supported as defined in ISOC++. 

13.1.5.2 Binary operators 
Supported as defined in ISOC++. 

13.1.5.3 Assignment 
Supported as defined in ISOC++. 

13.1.5.4 Function call 
Supported as defined in ISOC++. 

13.1.5.5 Subscripting 
Supported as defined in ISOC++. 

13.1.5.6 Class member access 
Supported as defined in ISOC++. 

13.1.5.7 Increment and decrement 
Supported as defined in ISOC++. 

13.1.6 Built-in operators 
Supported as defined in ISOC++. 



 

- 61 - 

14 Templates 
Supported as defined in ISOC++. 

14.1.1 Template parameters 
Supported with the restriction that template parameters must not include pointers to functions. 

14.1.2 Names of template specializations 
Supported as defined in ISOC++. 

14.1.3 Template arguments 
Supported as defined in ISOC++. 

14.1.3.1 Template type arguments 
Supported as defined in ISOC++. 

14.1.3.2 Template non-type arguments 
Supported as defined in ISOC++. 

14.1.3.3 Template template arguments 
Supported as defined in ISOC++. 

14.1.4 Type equivalence 
Supported as defined in ISOC++. 

14.1.5 Template declarations 
Supported as defined in ISOC++. 

14.1.5.1 Class Templates 
Supported as defined in ISOC++. 

Member functions of class templates 
Supported as defined in ISOC++. 

Member classes of class templates 
Supported as defined in ISOC++. 

Static data members of class templates 
Supported as defined in ISOC++. 

14.1.5.2 Member templates 
Supported as defined in ISOC++. 

14.1.5.3 Friends 
Supported as defined in ISOC++. 

14.1.5.4 Class template partial specializations 
Supported as defined in ISOC++. 
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Matching of class template partial specializations 
Supported as defined in ISOC++. 

Partial ordering of class template specializations 
Supported as defined in ISOC++. 

Members of class template specializations 
Supported as defined in ISOC++. 

14.1.5.5 Function templates 
Supported as defined in ISOC++. 

Function template overloading 
Supported as defined in ISOC++. 

Partial ordering of function templates 
Supported as defined in ISOC++. 

14.1.6 Name resolution 
Supported as defined in ISOC++. 

14.1.6.1 Locally declared names 
Supported as defined in ISOC++. 

14.1.6.2 Dependent names 
Supported as defined in ISOC++. 

Dependent types 
Supported as defined in ISOC++. 

Type-dependent expressions 
Supported as defined in ISOC++. 

Value-dependent expressions 
Supported as defined in ISOC++. 

Dependent template arguments 
Supported as defined in ISOC++. 

14.1.6.3 Non-dependent names 
Supported as defined in ISOC++. 

14.1.6.4 Dependent name resolution 
Supported as defined in ISOC++. 

Point of instantiation 
Supported as defined in ISOC++. 

Candidate functions 
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Supported as defined in ISOC++. 

14.1.6.5 Friend names declared within a class template 
Supported as defined in ISOC++. 

14.1.7 Template instantiation and specialization 
Supported as defined in ISOC++. 

14.1.7.1 Implicit instantiation 
Supported as defined in ISOC++. 

14.1.7.2 Explicit instantiation 

14.1.7.3 Explicit specialization 
Supported as defined in ISOC++. 

14.1.8 Function template specializations 
Supported as defined in ISOC++. 

14.1.8.1 Explicit template argument specification 
Supported as defined in ISOC++. 

14.1.8.2 Template argument deduction 
Supported as defined in ISOC++. 

Deducing template arguments from a function call 
Supported as defined in ISOC++. 

Deducing template arguments taking the address of a function template 
Supported as defined in ISOC++. 

Deducing conversion function template arguments 
Supported as defined in ISOC++. 

Deducing template arguments from a type 
Supported as defined in ISOC++. 

14.1.8.3 Overloaded resolution 
Supported as defined in ISOC++. 
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15 Preprocessing directives 
The full set of C/C++ preprocessing directives is supported (refer to clause 16 in [3]).  
A synthesis tool shall recognize pragma directives (#pragma).  It may ignore or process 
pragma directives under its synthesis policy.   
A Synthesis tool shall predefine the following macro names: 

1. __STDC__ : The value is implementation-dependent.  
2. __cplusplus : The value is implementation-dependent. 
3. SC_SYNTHESIS : The value means the version of the synthesis subset, i.e., the 

version of this document. A value of 0x123 means a version 
number of 1.23. 

By using SC_SYNTHESIS, code pieces, that are helpful for debugging and simulation, but 
which shall not or can not be synthesized can be switched off for synthesis: 
 
#ifdef SC_SYNTHESIS 
#  if SC_SYNTHESIS >= 0x200 
… // the code for synthesis subset of version 2.00 or later 
#  else 
… // the code for synthesis subset before version 2.00 
#  endif 
#else 
… // the code for simulation 
#endif 
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16 Lexical elements 
The Lexical elements of the synthesis subset are the same as for C++. Therefore refer to 2.13, 
2.13.1, 2.13.2 and 2.13.5 in [3] for further details. 
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17 Scope and visibility 
The scope rules for the synthesis subset are the same as for C++ (refer to clause 3.1, 3.3, 3.4 
and 3.5 in [3]), including: 

1. namespace (namespace keyword), 
2. scope resolution operator (::), 
3. using-directive (using keyword), 
4. nested namespace, and 
5. nested class.  

A synthesis tool shall recognize access specifiers (private, protected, public, and friend 
keywords).  
 



 

- 67 - 

18 Miscellaneous 

18.1 Tracing 
A synthesis tool shall recognize tracing constructs, but may ignore them: 

• declaration of a variable of type sc_trace_file*, 
• assignment to a variable of type sc_trace_file*, 
• calls to sc_close_isdb_trace_file, sc_close_wif_trace_file and 
sc_close_vcd_trace_file, 
• declaration or definition of any function named sc_trace, and  
• calls to any function named sc_trace. 

Note that those constructs must not contain any side effects, e.g., changing a value of a 
variable.  
 

18.2 Outputting messages to stdout and/or cout 
A synthesis tool shall recognize the following constructs, but may ignore them: 

• printf function, and 
• using operator << to cout. 

When those constructs contain side effects (e.g., changing values of variables), a synthesis 
tool may warn and ignore them. 
 printf(“x = %d”, x); // Ignored 

printf(“y = %d”, ++y); // Ignored with warning 
cout << “z = “ << z << endl; // Ignored 

 

18.3 Exception handling 

 
Not supported. 
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Annex A Syntax summary (informative) 
 
 
 

A.1 Keywords 
typedef-name ::= 

identifier 
 

namespace-name ::= 
original-namespace-name 

|   namespace-alias 
 
original-namespace-name ::= 

identifier 
 
namespace-alias ::= 

identifier 
 
class-name ::= 

identifier 
|   template-id 

 
enum-name ::= 

identifier 
template-name ::= 

identifier 

A.2 Lexical conventions 
Synthesis tools are able to reject a character literal and a universal character name. A string 
literal is used only for the name of submodule. 

hex-quad ::= 
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit 

 
universal-character-name ::= 

\u hex-quad 
\U hex-quad hex-quad 

 
preprocessing-token ::= 

header-name 
|   identifier 
|   pp-number 
|   character-literal 
|   string-literal 
|   preprocessing-op-or-punc 
each non-white-space character that cannot be one of the above 

 
token ::= 

identifier 
|   keyword 
|   literal 
|   operator 
|   punctuator 
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header-name ::= 
< h-char-sequence > 

|   “ q-char-sequence “ 
 
h-char-sequence ::= 

h-char 
|   h-char-sequence h-char 

 
h-char ::= 

any member of the source character set except new-line and > 
 
q-char-sequence ::= 

q-char 
|   q-char-sequence q-char 

 
q-char ::= 

any member of the source character set except new-line and “ 
 
pp-number ::= 

digit 
|   . digit 
|   pp-number digit 
|   pp-number nondigit 
|   pp-number e sign 
|   pp-number E sign 
|   pp-number . 

 
identifier ::= 

nondigit 
|   identifier nondigit 
|   identifier digit 

 
nondigit ::= one of 

universal_character_name 
_ a b c d e f g h i j k l m 
n o p q r s t u v w x y z 
A B C D E F G H I J K L M 
N O P Q R S T U V W X Y Z 

 
digit ::= one of 

0 1 2 3 4 5 6 7 8 9 
 
preprocessing-op-or-punc ::= one of 

{ } [ ] # ## ( ) 
 <: :> <% %> %: %:%: ; : ... 
 new delete ? :: . .* 
 + - * / % ^ & | ~ 
 ! = < > += -= *= /= %= 
 ^= &= |= << >> >>= <<= == != 
 <= >= && || ++ -- , ->* -> 
 and and_eq bitand bitor compl not not_eq 
 or or_eq xor xor_eq 
 
literal ::= 

integer-literal 
|   character-literal 
|   floating-literal 
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|   string-literal 
|   boolean-literal 

 
integer-literal ::= 

decimal-literal [ integer-suffix ] 
|   octal-literal [ integer-suffix ] 
|   hexadecimal-literal [ integer-suffix ] 

 
decimal-literal ::= 

nonzero-digit 
|   decimal-literal digit 

 
octal-literal ::= 

0 
|   octal-literal octal-digit 

 
hexadecimal-literal ::= 

0x hexadecimal-digit 
|   0X hexadecimal-digit 
|   hexadecimal-literal hexadecimal-digit 

 
nonzero-digit ::= one of 

1 2 3 4 5 6 7 8 9 
 
octal-digit ::= one of 

1 2 3 4 5 6 7 
 
hexadecimal-digit ::= one of 

1 2 3 4 5 6 7 8 9 
a b c d e f 
A B C D E F 

 
integer-suffix ::= 

unsigned-suffix [ long-suffix ] 
|   long-suffix [ unsigned-suffix ] 

 
unsigned-suffix ::= one of 

u U 
 
long-suffix ::= one of 

l L 
 
character-literal ::= 

‘ c-char-sequence ‘ 
|   L ‘ c-char-sequence ‘ 

 
c-char-sequence ::= 

c-char 
|   c-char-sequence c-char 

 
c-char ::= 

any number of the source character set except the signal_quote ‘, backslash \, or new_line 
character 

|   escape-sequence 
|   universal-character-name 

 
escape-sequence ::= 
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simple-escape-sequence 
|   octal-escape-sequence 
|   hexadecimal-escaple-sequence 

 
simple-escape-sequence ::= one of 

\’ \” \? \\ 
\a \b \f \n \r \t \v 

 
octal-escape-sequence ::= 

\ octal-digit 
|   \ octal-digit octal-digit 
|   \ octal-digit octal-digit octal-digit 

 
hexadecimal-escape-sequence ::= 

\x hexadecimal-digit 
|   hexadecimal-escape-sequence hexadecimal-digit 

 
floating-literal ::= 

fractional-constant [ exponent-part ] [ floating-suffix ] 
|   digit-sequence exponent-part [ floating-suffix ] 

 
fractional-constant ::= 

[ digit-sequence ] . digit-sequence 
|   digit-sequence . 

 
exponent-part ::= 

e [ sign ] digit-sequence 
|   E [ sign ] digit-sequence 

 
sign ::= one of 

+ - 
 
digit-sequence ::= 

digit 
|   digit-sequence digit 

 
floating-suffix ::= one of 

f l F L 
 
string-literal ::= 

“ [ s-char-sequence ] “ 
|   L “ [ s-char-sequence ] “ 

 
s-char-sequence ::= 

s-char 
|   s-char_sequence s-char 

 
s-char ::= 

any member of the source character set except the double_quote “, bachslash \, or new_line 
character 

|   escape_sequence 
|   universal_character_name 

 
boolean-literal ::= 

false 
|   true 
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A.3 Basic concepts 
translation-unit ::= 

    [ declaration-seq ] [ sc-main-definition ] 

A.4 Expressions 
primary-expression ::= 

literal 
|   this 
|   ( expression ) 
|   id-expression 

 
id-expression ::= 

unqualified-id 
|   qualified-id 

 
unqualified-id 

identifier 
|   operator-function-id 
|   conversion-function-id 
|   ~class-name 
|   template-id 

 
qualified-id 

[ :: ] nested-namespace-specifier [ template ] unqualified-id 
|   :: identifier 
|   :: operator-function-id 
|   :: template-id 

 
nested-name-specifier ::= 

class-or-namespace-name :: [ nested-name-specifier ] 
|   class-or-namespace-name :: template nested-name-specifier 

 
class-or-namespace-name ::= 

class-name 
|   name-space-name 

 
postfix-expression ::= 

primary-expression 
|   postfix-expression [ expression ] 
|   postfix-expression ( [ expression-list ] ) 
|   simple-type-specifier ( [ expression-list ] ) 
|   typename [ :: ] nested-name-specifier identifier ( [ expression-list ] ) 
|   typename [ :: ] nested-name-specifier [template] template-id ( [ expression-list ] ) 
|   postfix-expression . [ template ] id-expression 
|   postfix-expression -> [ template ] id-expression 
|   postfix-expression . pseudo-destructor-name 
|   postfix-expression -> pseudo-destructor-name 
|   postfix-expression ++ 
|   postfix-expression -- 
|   dynamic-cast < type-id > ( expression ) 
|   static-cast < type-id > ( expression ) 
|   reinterpret-cast < type-id > ( expression ) 
|   const-cast < type-id > ( expression ) 
|   typeid ( expression ) 
|   typeid ( type-id ) 
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expression-list ::= 
assignment-expression 

|   expression-list , assignment-expression 
 
pseudo-destructor-name ::= 

[ :: ] [ nested-name-specifier ] type-name :: ~ type-name 
|   [ :: ] nested-name-specifier template template-id :: ~ type-name 
|   [ :: ] [ nested-name-specifier ] ~ type-name 

 
unary-expression ::= 

postfix-expression 
|   ++ cast-expression 
|   -- cast-expression 
|   unary-operator cast-expression 
|   sizeof unary-expression 
|   sizeof ( type-id ) 
|   new-expression 
|   delete-expression 

 
unary-operator ::= one of 

* & +  - ! ~ 
 
new-expression ::= 

[ :: ] new [ new-placement ] new-type-id [ new-initializer ] 
|   [ :: ] new [ new-placement ] ( type-id ) [ new-initializer ] 

 
new-placement ::= 

( expression-list ) 
 
new-type-id ::= 

type-specifier-seq [ new-declarator ] 
 
new-declarator ::= 

ptr-operator [ new-declarator ] 
|   direct-new-declarator 

 
direct-new-declarator ::= 

[ expression ] 
|   direct-new-declarator [ constant-expression ] 

 
new-initializer ::= 

( [expression-list ] ) 
 
delete-expression ::= 

[ :: ] delete cast-expression 
|   [ :: ] delete [ ] cast-expression 

 
cast-expression ::= 

unary-expression 
|   ( type_id ) cast-expression 

 
pm-expression ::= 

cast-expression 
|   pm-expression .* cast-expression 
|   pm-expression ->* cast-expression 

 
multiplicative-expression ::= 
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pm-expression 
|   multiplicative-expression * pm-expression 
|   multiplicative-expression / pm-expression 
|   multiplicative-expression % pm-expression 

 
additive-expression ::= 

multiplicative-expression 
|   additive-expression + multiplicative-expression 
|   additive-expression – multiplicative-expression 

 
shift-expression ::= 

additive-expression 
|   shift-expression << additive-expression 
|   shift-expression >> additive-expression 

 
relational-expression ::= 

shift-expression 
|   relational-expression < shift-expression 
|   relational-expression > shift-expression 
|   relational-expression <= shift-expression 
|   relational-expression >= shift-expression 

 
equality-expression ::= 

relational-expression ::= 
|   equality-expression == relational-expression 
|   equality-expression != relational-expression 

 
and-expression ::= 

equality-expression 
|   and-expression & equality-expression 

 
exclusive-or-expression ::= 

and-expression 
|   exclusive-or-expression ^ and-expression 

 
inclusive-or-expression ::= 

exclusive-or-expression 
|   inclusive-or-expression | exclusive-or-expression 

 
logical-and-expression ::= 

inclusive-or-expression 
|   logical-and-expression && inclusive-or-expression 

 
logical-or-expression ::= 

logical-and-expression 
|   logical-or-expression || logical-and-expression 

 
conditional-expression ::= 

logical-or-expression 
|   logical-or-expression ? expression : assignment-expression 

 
assignment-expression ::= 

conditional-expression 
|   logical-or-expression assignment-operator assignment-expression 
|   throw-expression 

 
assignment-operator ::= one of 
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=  *=  /=  %=  +=  -=  >>=  <<=  &=  ^=  |= 
 
expression ::= 

assignment-expression 
|   expression , assignment-expression 

 
constant-expression ::= 

conditional-expression 

A.5 Statements 
statement ::= 

labeled-statement 
|   expression-statement 
|   compound-statement 
|   wait-statement 
|   signal-assignment-statement 
|   selection-statement 
|   iteration-statement 
|   jump-statement 
|   declaration-statement 
|   try-block 

 
labeled-statement ::= 

identifier : statement 
|   case constant-expression : statement 
|   default : statement 

 
expression_statement ::= 

[ expression ] ; 
 
compound-statement ::= 

{ [ statement_seq ] } 
 
statement-seq ::= 

statement 
|   statement-seq statement 

 
wait-statement ::= 

wait ( ) ; 
|   wait ( constant-expression ) ; 
 

signal-assignment-statement ::= 
signal-or-port-identifier . write ( expression ) ; 

|   signal-or-port-identifier = expression ; 
 
selection_statement ::= 

if ( condition ) statement 
|   if ( condition ) statement else statement 
|   switch ( condition ) statement 
 

condition ::= 
expression 

|   type_specifier_seq declarator = assignment_expression 
 
iteration-statement ::= 

while ( condition ) statement 
|   do statement while ( expression ) ; 
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|   for ( for-init-statement [ condition ] ; [ expression ] )  statement 
 
for-init-statement ::= 

expression-statement 
|   simple-declaration 

 
jump-statement ::= 

break ; 
|   continue ; 
|   return [ expression ] ; 
|   goto label-name ; 

 
declaration-statement ::= 

block-declaration 

A.6 Declarations 
declaration-seq ::= 

declaration 
|   declaration-seq declaration 

 
declaration ::= 

block-declaration 
|   function-declaration 
|   template-declaration 
|   explicit-instantiation 
|   explicit-specialization 
|   linkage-specification 
|   namespace-definition 
|   sc-process-definition 

 
block-declaration ::= 

simple-declaration 
|   asm-definition 
|   namespace-alias-definition 
|   using-declaration 
|   using-directive 

 
simple-declaration ::= 

[ decl-specifier-seq ] [ init-declarator-list ] ; 
 
decl-specifier ::= 

storage-class-specifier 
|   type-specifier 
|   function-specifier 
|   friend 
|   typedef 

 
decl-specifier-seq ::= 

[ decl-specifier-seq ] decl-specifier 
 
storage-class-specifier ::= 

auto 
|   register 
|   static 
|   extern 
|   mutable 
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function-specifier ::= 
inline 

|   virtual 
|   explicit 

 
typedef-name ::= 

identifier 
 
type-specifier ::= 

simple-type-specifier 
|   class-specifier 
|   enum-specifier 
|   elaborated-type-specifier 
|   cv-qualifier 
|   sc-type-specifier 
|   sc-module-specifier 

 
simple-type-specifier ::= 

[ :: ] [ nested-name-specifier ] type-name 
|   [ :: ] nested-name-specifier template template-id 
|   char 
|   wchar_t 
|   bool 
|   short 
|   int 
|   long 
|   signed 
|   unsigned 
|   float 
|   double 
|   void 

 
type-name ::= 

class-name 
|   enum-name 
|   typedef-name 

 
elaborated-type-specifier ::= 

class_key [ :: ] [ nested_name_specifier ] identifier 
|   enum [ :: ] [ nested_name_specifier ] identifier 
|   typename [ :: ] nested_name_specifier identifier 
|   typename [ :: ] nested_name_specifier [ template ] template_id 

 
enum-name ::= 

identifier 
 
enum-specifier ::= 

enum [ identifier ] { [ enumerator-list ] } 
 
enumerator-ist ::= 

enumerator-difinition 
|   enumerator-list , enumerator-difinition 

 
enumerator-difinition ::= 

enumerator 
|   enumerator = constant-expression 
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enumerator ::= 
identifier 

 
namespace-name ::= 

original-namespace-name 
|   namespace-alias 

 
original-namespace-name 

identifier 
 
namespace-definition ::= 

named-namespace-definition 
|   unnamed-namespace-definition 

 
named-namespace-definition ::= 

original-namespace-definition 
|   extension-namespace-definition 

 
original-namespace-definition ::= 

namespace identifier [ namespace-body ] 
 
extension-namespace-definition ::= 

namespace original-namespace-name [ namespace-body ] 
 
unnamed-namespace-definition ::= 

namespace [ namespace-body ] 
 
namespace-body ::= 

[ declaration-seq ] 
 
namespace-alias ::= 

identifier 
 
namespace-alias-definition ::= 

namespace identifier = qualified-namespace-specifier ; 
 
qualified-namespace-specifier ::= 

[ :: ] [ nested-name-specifier ] namespace-name 
 
using-declaration ::= 

using [ typename ] [ :: ] nested-name-specifier unqualified-id ; 
|   using :: unqualified-id ; 

 
using-directive ::= 

using namespace [ :: ] [ nested-name-specifier ] namespace-name ; 
 
asm-definition ::= 

asm ( string-literal ) ; 
 
linkage-specification ::= 

extern string-literal { [ declaration-seq ] } 
|   extern string-literal declaration 

 

A.6-1 SystemC Type Specifiers 
sc-type-specifier ::= 

sc_int < constant-expression > 
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|   sc_uint < constant-expression > 
|   sc_bigint < constant_expression > 
|   sc_biguint < constant_expression > 
|   sc_logic 
|   sc_lv < constant_expression > 
|   sc_bit 
|   sc_bv < constant_expression > 
|   sc_fixed < constant_expression , constant_expression  
   [ , sc-quantization-mode-specifier ] [ , sc-overflow-mode-specifier ] 
   [ , constant-expression ] > 
|   sc_ufixed < constant_expression , constant_expression 
   [ , sc-quantization-mode-specifier ] [ , sc-overflow-mode-specifier ]    [ , constant-expression ] 
> 

 
sc-quantization-mode-specifier ::= 

SC_RND 
|   SC_RND_ZERO 
|   SC_RND_MIN_INF 
|   SC_RND_INF 
|   SC_RND_CONV 
|   SC_TRN 
|   SC_TRN_ZERO 

 
sc-overflow-mode-specifier ::= 

SC_SAT 
|   SC_SAT_ZERO 
|   SC_SAT_SYN 
|   SC_WRAP 
|   SC_WRAP_SM 

A.7 Declarators 
init-declarator-list ::= 

init-declarator 
|   init-declarator-list , init-declarator 

 
init-declarator ::= 

declarator [ initializer ] 
 
declarator ::= 

direct-declarator 
|   ptr-operator declarator 

 
direct-declarator ::= 

declarator-id 
|   direct-declarator ( parameter-declaration-clause ) [ cv-qualifier-seq ]  
   [ exception-specification ] 
|   direct-declaration [ [ constant-expression ] ] 
|   ( declarator ) 

 
ptr-operator ::= 

* [ cv-qualifier-seq ] 
|   & 
|   [ :: ] [ nested-name-specifier ] * [ cv-qualifier-seq ] 

 
cv-qualifier-seq ::= 

cv-qualifier [ cv-qualifier-seq ] 
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cv-qualifier ::= 
const 

|   volatile 
 
declarator-id ::= 

id-expression 
|   [ :: ] [ nested-name-specifier ] type-name 

 
type-id ::= 

type-specifier-seq [ abstract-declarator ] 
 
type-specifier-seq ::= 

type-specifier [type-specifier-seq ] 
 
abstract-declarator ::= 

ptr_operator [ abstract-declarator ] 
|   direct-abstract-declarator 

 
direct-abstract-declarator ::= 

[ direct-abstract-declarator ] ( parameter-declaration-clause ) [ cv-qualifier-seq ] 
   [exception-specification ] 

|   [direct-abstract-declarator ] [ [ constant-expression ] ] 
|   ( abstract-declarator ) 

 
parameter-declaration-clause ::= 

[ parameter-declaration-list ] [ ... ] 
|   parameter-declaration-list , ... 

 
parameter-declaration-list ::= 

parameter-declaration 
|   parameter-declaration-list , parameter-declaration 

 
parameter-declaration ::= 

decl-specifier-seq declarator 
|   decl-specifier-seq declarator = assignment-expression 
|   decl-specifier-seq [ abstract-declarator ] 
|   decl-specifier-seq [ abstract-declarator ]  =  assignment-expression 
|   [ const ] sc-signal-declaration & identifier 

 
function-definition ::= 

[ decl-specifier-seq ] declarator [ ctor-initializer ] function_body 
|   [decl-specifier-seq ] declarator function-try-block 

 
function-body ::= 

compound-statement 
 
initializer ::= 

= initializer-clause 
|   ( expression-list ) 

 
initializer-clause ::= 

assignment-expression 
|   { initializer-list [ , ] } 
|   { } 

 
initializer-list 

initializer-clause 
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|   initializer-list , iitializer-clause 

A.8 Classes 
Classes are regarded as a module or a user defined type in SystemC synthesis. The syntax for 
module is described in A.8-1 section. There is many limitation for a user defined type. 

class-name ::= 
identifier 

|   template-id 
 
class-specifier ::= 

class-head { [ member-specification ] } 
- 

 
class-head ::= 

class-key [ identifier ] [ base_clause ] 
|   class-key nested-name-specifier identifier [ base-clause ] 
|   class-key [ nested-name-specifier ] template-id [ base-clause ] 

 
class-key ::= 

class 
|   struct 
|   union 

 
member-specification ::= 

member-declaration [ member-specification ] 
|   access-specifier : [ member-specification ] 

 
member-declaration ::= 

[ decl-specifier-seq ] [ member-declarator-list ] ; 
|   function-definition [ ; ] 
|   [ :: ] nested-name-specifier [ template ] unqualified-id ; 
|   using-declaration 
|   template-declaration 

 
member-declarator-list ::= 

member-declarator 
|   member-declarator-list [ , ] member-declarator 

 
member-declarator ::= 

declarator [ pure-specifier ] 
|   declarator [ constant-initializer ] 
|   [ identifier ] : constant-expression 

 
pure-specifier ::= 

= 0 
 
constant-initializer ::= 

= constant-expression 

A.8-1 Module Declaration 
sc-module-specifier ::= 

sc-module-head { [ module-member-specification ] } 
 

sc-module-head ::= 
SC_MODULE( identifier )  

|   class-key [ nested-name-specifier ] identifier : [ public ] sc_module 
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sc-module-member-specification ::= 

sc-module-member-declaration [ sc-module-member-specification ] 
|   access-specifier : [ sc-module-member-specification ] 

 
sc-module-member-declaration ::= 

member-declaration 
|   sc-signal-dclaration 
|   sc-sub-module-declaration 
|   sc-module-constructor-definition 
|   sc-module-constructor-declaration 
|   sc-has-process-declaration 

 
 

 
sc-signal-declaration ::= 

sc-signal-key < type-specifier > signal-declarator-list  ; 
|   sc-resolved-key signal -declarator-list ; 
|   sc-resolved-vector-key < constant-expression > signal -declarator-list ; 

 
signal-declarator-list ::= 

identifier 
|   signal-declarator-list , identifier 

 
|   sc_in_clk 

|   sc_out_clk 
|   sc_inout_clk 
 

sc-resolved-key ::= 
sc_signal_resolved 

|   sc_in_resolved 
|   sc_out_resolved 
|   sc_inout_resolved 
 

sc-resolved-vector-key ::= 
sc_signal_rv 

|   sc_in_rv 
|   sc_out_rv 
|   sc_inout_rv 

 
sc-sub-module-declaration ::= 

id-expression [ * ] identifier ; 
sc-module-constractor-declaration ::= 

SC_CTOR( identifier ) ; 
|   identifier ( sc_module_name [ identifier ] [  , parameter-declaration-list ] ) ; 

 
sc-module-constructor-definition ::= 

SC_CTOR( identifier ) [ ctor-initializer ] sc-module-constructor-body 
|   identifier ( sc_module_name identifier [ , parameter-declaration-list ] ) : sc_module 
( identifier ) [ , mem-initializer-list ] sc-module-constructor-body 

sc-module-constractor-body ::= 
{ [ sc-module-constractor-element-seq  ] } 

 
sc-module-constractor-element-seq ::= 

sc-module-constractor-element 
|   sc-module-constractor-element-seq sc-module-constractor-element 
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sc-module-constractor-element ::= 
sc-module-instantiation-statement 

|   sc-port-binding-statement 
|   sc-process-statement 

 
sc-module-instantiation-statement ::= 

identifier = new [ :: ] [ nested-name-specifier ] class-name ( string_literal ) ; 
 
sc-port-binding-statement ::= 

sc-named-port-binding-statement ; 
|   sc-positional-port-binding-statement ; 

 
sc-named-port-binding-statement ::= 

identifier -> id-expression ( id-expression ) ; 
identifier . id-expression ( id-expression ) ; 

 
sc-positional-port-binding ::= 

[ * ] identifier ( identifier-list ) 
 
identifier-list ::= 

id-expression 
|   identifier-list id-expression 

 
sc-process-statement ::= 

SC_METHOD ( identifier ) ; sensitivity-list|   SC_CTHREAD ( identifier , sc-event ) ; [ sc-
watching-statement ] 

 
sc-process-definition ::= 

void sc-process-id (  ) sc-process-body 
 
sc-process-id ::= 

identifier 
|   template-id 
|   [ :: ] nested-name-specifier [ template ] identifier 
|   [ :: ] nested-name-specifier [ template ] template-id 
 

sc-process-body ::= 
sc-method-body 

|   sc-cthread-body 
 

sc-method-body ::= 
compound-statement 

 
sc-sensitivity-list ::= 

sc-sensitivity-clause 
|   sc-sensitivity-list sc-sensitivity-clause 

 
sc-sensitivity-clause ::= 

sensitive ( sc-event ) ; 
|   sensitive_pos ( identifier ) ; 
|   sensitive_neg ( identifier ) ; 
|   sensitive sc-event-stream ; 
|   sensitive_pos sc-event-stream ; 
|   sensitive_neg sc-event-stream ; 

 
sc-event-stream ::= 

<< sc-event 



 

- 84 - 

|   sc-event-stream << sc-event 
 

sc-identifier-stream ::= 
<< identifier 

|   sc-identifier-stream << identifier 
 
sc-event ::= 

identifier 
|   identifier . pos ( ) 

|   identifier . neg ( ) 
 
sc-watching-satement ::= 

watching ( identifier . delayed ( ) == sc-watching-condition ) ; 
 
sc-watching-condition ::= 

boolean-literal 
|   logic-literal 

 
sc-cthread-body ::= 

compound-statement wait ( ) ; while ( true ) {  compound-statement } 
 

sc-has-process-declaration ::= 
SC_HAS_PROCESS( identifier ) ; 
 

A.9 Derived classes 
base-clause ::= 

: base-specifier-list 
 
base-specifier-list ::= 

base-specifier 
|   base-specifier-list , base-specifier 

 
base-specifier ::= 

[ :: ] [ nested-name-specifier ] class-name 
|   virtual [ access-specifier ] [ :: ] [ nested-name-specifier ] class-name 
|   access-specifier [ virtual ] [ :: ] [ nested-name-specifier ] class-name 

 
access-specifier ::= 

private 
|   protected 
|   public 

A.10 Special member functions 

conversion-function-id ::= 
operator conversion-type-id 

 
converion-type-id ::= 

type-specifier-seq [ conversion-declarator ] 
 
conversion-declarator ::= 

ptr-operator [ conversion-declarator ] 
 
ctor-initializer ::= 

: mem-initializer-list 
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mem-initializer-list ::= 
mem-initializer 

mem-initializer , mem-initializer-list 
 
mem-initializer ::= 

mem-initializer-id ( [ expression-list ] ) 
 
mem-initializer-id ::= 

[ :: ] [ nested-name-specifier ] class-name 
|   identifier 

A.11 Overloading 
operator_function_id ::= 

operator operator 
 
operator ::= one of 

new delete new[] delete[] 
+ - * / % ^ & | ~ 
! = < > += -= *= /= %= 
^= &= |= << >> >>= <<= == != 
<= >= && || ++ -- , ->* -> 
() [] 

A.12 Templates 
template-declaration ::= 

[ export ] template < template-parameter-list > declaration 
 
template-parameter-list ::= 

template-parameter 
|   template-parameter-list , template-parameter 

 
template-parameter ::= 
     type-parameter 
 |   parameter-declaration 
 
type-parameter ::= 

class [ identifier ] 
|   class [ identifier ] = type-id 
|   typename [ identifier ] 
|   typename [ identifier ] = type-id 
|   template < template-parameter-list > class [identifier ] 
|   template < template-parameter-list > class [identifier ] = id-expression 

 
template-id ::= 

template-name < [ template-argument-list ] > 
 
template-name ::= 

identifier 
 
template-argument-list ::= 

template-argument 
|   template-argument-list , template-argument 

 
template-argument ::= 

assignment-expression 
|   type-id 
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|   id-expression 
 
explicit-instantiation ::= 

template declaration 
 
explicit-specification ::= 

template < > declaration 

A.13 Exception handling 
Exception handling cannot be used for synthesis coding. 

try_blick ::= 
try compound_statement handler_seq 

 
function_try_block ::= 

try [ ctor_initializer ] function_body handler_seq 
 
handler_seq ::= 

handler [ handler_seq ] 
 
handler ::= 

catch { exception_declaration } compound_statement 
 
exception_declaration ::= 

type_specifier_seq declarator 
|   type_specifier_seq abstract_declarator 
|   type_specifier_seq 
|   ... 

 
throw_expression ::= 

throw [ assignment_expression ] 
 
exception_specification ::= 

throw ( [ type_id_list ] ) 
 
type_id_list ::= 

type_id 
|   type_id_list , type_id 

A.14 Preprocessing directivesb 
All preprocessing directives of C++ are acceptable for synthesis coding. 

preprocessing-file ::= 
[ group ] 

 
group ::= 

group-part 
|   group group-part 

 
group-part ::= 

[ pp-token ] new-line 
|   if-section 
|   control-line 

 
if-section ::= 

if-group [ elif-groups ] [ else-group ] endif-line 
 
if-group ::= 
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# if constant-expression new-line [ group ] 
|   # ifdef identifier new-line [ group ] 
|   # ifndef identifier new-line [ group ] 

 
elif-groups ::= 

elif-group 
|   elif-groups elif-group 

 
elif-group ::= 

# elif constant-expression new-line [ group ] 
 
else-group ::= 

# else new-line [ group ] 
 
endif-line ::= 

# endif new-line 
 
control-line ::= 

# include pp-tokens new-line 
|   # define identifier replacement-list new-line 
|   # define identifier lparen [ identifier-list ] replacement-list new-line 
|   # undef identifier new-line 
|   # line pp-tokens new-line 
|   # error [ pp-tokens ] new-line 
|   # pragma [ pp-tokens ] new-line 
|   # new-line 

 
lparen ::= 

the left_parenthesis character without preceding white_space 
 
replacement-list ::= 

[ pp-tokens ] 
 
pp-tokens ::= 

preprocessing-token 
|   pp-tokens preprocessing-token 

 
new-line ::= 

the new_line character 
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Annex B Glossary (informative) 
behavioral level: A design level which has no detail of hardware-resource and operating-schedule. Today, 
we expect that there is one clock signal for event trigger. We have to describe an algorithm and interface 
between outside and inside of module as ports. 

behavioral synthesis: A synthesis from a behavioral level design to RTL level design or gate level design. 
A behavioral synthesis tool works for resource sharing and scheduling. Resource means hardware which 
are memories, registers, combinational circuits and so on. Scheduling means resource assignment of each 
operation to each clock cycle and hardware. 

class: The same term as the one used in C++. In SystemC, the class mechanism is used for module 
definition and the object types defined for SystemC. The class except module is limited the usage for 
synthesis. 

constructor: The same term as the one used in C++. 

clock: A basic signal which triggers hardware events which occurs every fixed period. 

cycle: A period of clock. 

datatype: A type of signal. 

function: The same term as the one used in C++. 

initializer: The same term as the one used in C++. 

macro: A keyword which is defined in preprocessor 

member: The same term as the one used in C++. 

method: It is a term of object oriented design. C++ realized it as a member function. 

module: A capsulated block which has ports for interface.  

named mapping: A way that all ports of a module are binding to signals by their names. 

namespace: The same term as the one used in C++. 

operator: The same term as the one used in C++. 

overload: The same term as the one used in C++. 

pointer: The same term as the one used in C++. 

port: A interface signal which connects between inside and outside of module. 

positional mapping: A way that all ports of a module are binding to signals by their describing positions. 

reset: A signal which indicates that registers have to become initial value. 

process: A special function which is triggered by sensitivity signals in module. There are three kind of 
process in SystemC, which are SC_METHOD, SC_THREAD and SC_CTHREAD. 

register transfer level(RTL): A design level which has the description of register and combination logic. 
The design should be cleared the schedule of each cycle operation and register recouces. 
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RTL synthesis: A synthesis from a RTL level design to a gate level design. A RTL synthesis tool works 
for logic synthesis which is mainly solving of boolean algebra . 

signal: A object which is declared as sc_signal. 

submodule: A module which is called in a module. The submodule works as the part of the calling module. 

template: The same term as the one used in C++. 
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